C O M M U N I C A T I O N S
Table 3. Ortho Arylation of Actanilides with 2a via C-H
Scheme 1. Proposed Mechnism of Ortho Arylation by Coupling
via Pd(II)-Catalyzed C-H Activation
Functionalizationa
4 to form diaryl palladium species 5, which underwent reductive
elimination to produce the coupling product. Pd(0) was oxidized
back to Pd(II) by either Ag(I) or Cu(II) or both to complete the
catalytic cycle. Thus, electron-donating groups on acetanilides were
helpful for this transformation. The prepared palladacycle 4 could
stoichiometrically transform to the coupling product, which offered
a further proof for this proposed mechanism.5c
In summary, we developed a novel transformation to realize ortho
arylation of acetanilides with trialkoxyarylsilanes through direct
C-H functionalization. Further investigation to clearly understand
this transformation and expand the application of this chemistry is
underway in our laboratory.
Acknowledgment. Support of this work by a starter grant from
Peking University and the grant from NSFC (Grant No. 20542001
and 20521202) is gratefully acknowledged.
Supporting Information Available: Brief experimental details and
other spectra data for products. This material is available free of charge
References
(1) (a) Takahashi, K.; Minami, T.; Ohara, Y.; Hiyama, T. Tetrahedron Lett.
1993, 34, 8263. (b) Alacid, E.; Najera, C. AdV. Synth. Catal. 2006, 348,
945. (c) Katayama, H.; Nagao, M.; Ozawa, F. J. Org. Chem. 2006, 71,
2699. (d) Pierrat, P.; Gros, P.; Fort, Y. Org. Lett. 2005, 7, 697.
(2) (a) Hiyama, T.; Hatanaka, Y. Pure. Appl. Chem. 1994, 66, 1471. (b)
Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835. (c) Adam
F. L.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
(3) For recent reviews, see: (a) Godula, K.; Sames, D. Science 2006, 312,
67. (b) Daugulis, O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q. N.;
Lazareva, A. Synlett 2006, 3382. (c) Dick, A. R.; Sanford, M. S.
Tetrahedron 2006, 62, 2439. (d) Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol.
Chem. 2006, 4, 4041. (e) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal.
2003, 345, 1077. (f) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35,
826. (g) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731.
(h) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (i)
Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1699.
(4) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174.
(b) Corbet, J.-P.; Mignani, G. Chem. ReV. 2006, 106, 2651. (c) Catellani,
M.; Motti, E.; Faccini, F.; Ferraccioli, R. Pure Appl. Chem. 2005, 77,
1243. (d) Shabashov, D.; Daugulis, O. Org. Lett. 2006, 8, 4947. (e)
Cardenas, D. J.; Martin-Matute, B.; Echavarren, A. M. J. Am. Chem. Soc.
2006, 128, 5033. (f) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006,
128, 16496. (g) Denmark, S. E.; Kallemeyn, J. M. J. Am. Chem. Soc.
2006, 128, 15958. (h) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem.
Soc. 2006, 128, 15964. (i) Lane, B. S.; Brown, M. A.; Sames, D. J. Am.
Chem. Soc. 2005, 127, 8050. (j) Deprez, N. R.; Kalyani, D.; Krause, A.;
Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972. (k) Campeau, L.-C.;
Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581. (l)
Terao, Y.; Wakui, H.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J.
Org. Chem. 2003, 68, 5236.
(5) (a) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. ReV. 2005, 105, 2527.
(b) Wang, Z.; Zhang, Z.; Lu, X. Organometallics 2000, 19, 775. (c)
Horino, H.; Inoue, N. J. Org. Chem. 1981, 46, 4416. (d) Zaitsev, V. G.;
Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156. (e) Tsang, W. C. P.;
Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560. (f)
Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046. (g)
Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P.
C. J.; de Vries, J. G.; Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002,
124, 1586. (h) Tremont, S. J.; Rahman, H. U. J. Am. Chem. Soc. 1984,
106, 5759. (i) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.;
Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416.
a All the reactions were carried out in the presence of 0.2 mmol of 1,
0.4 mmol of 2a, 0.01 mmol of Pd(OAc)2, 0.4mmol of Cu(OTf)2, and 0.4
mmol of AgF in 5 mL of dioxane at 110 °C for 48 h. b Isolated yields.c GC
yields with n-decane as an internal standard. d Reaction run in the presence
of 10.0 mol % of Pd(OAc)2 in these reactions, and some starting materials
were recovered.
with lower efficiency (entries 2 and 3). The other groups, such as
tosyl, acetacetyl, and trifluoroacetyl were not beneficial for this
transformation (entries 4, 6, and 9). N-alkylated and free anilines
were not fit for this transformation. Either the electron-donating
groups or electron-withdrawing groups introduced to the phenyl
group of acetanilides could be applied to form desired products
(entries 10-16). However, the efficiency of this transformation was
decreased by electron-withdrawing groups, perhaps arising from
the decrease of electron density on the phenyl ring (entries 14-
15). Furthermore, benzoyl, acetyl, and methyl groups could serve
as a protecting group of phenol, and the regioselectivity was not
affected by these functionalities (entries 10-12). The polysubsti-
tuted acetanilides were also investigated, and the expected products
were obtained in good yields (entries 18-20). It is worthy pointing
out that the regioselectivity of this arylation was also controlled
by the steric effect with substituents at the meta position of
acetanilides (entries 16 and 20).
This coupling may go through the following catalytic process
(Scheme 1). After the ortho electrophilic attack by Pd(II) cation
with the assistance of the acetamino group, the aryl group from
silicate 2′ assisted by fluoride was transmetalated to palladacycle
JA070767S
9
J. AM. CHEM. SOC. VOL. 129, NO. 19, 2007 6067