210
X. Liang / Applied Catalysis A: General 455 (2013) 206–210
Table 6
[2] P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 112 (2000) 3926–3945.
Quality of the refined biodiesel.
[3] R. Sheldon, Chem. Commun. (2001) 2399–2407.
[4] D. Zhao, M. Wu, Y. Kou, E. Min, Catal. Today 74 (2002) 157–189.
[5] J. Dupont, R.F. Souza, P.A.Z. Suarez, Chem. Rev. 102 (2002) 3667–3692.
[6] A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weaver, D.C. Forbes, et al., J. Am.
Chem. Soc. 124 (2002) 5962–5963.
[7] R. Sugimura, K. Qiao, D. Tomida, C. Yokoyama, Catal. Commun. 8 (2007)
770–772.
[8] B.A. Da Silveira Neto, G. Ebeling, R.S. Goncalves, F.C. Gozzo, M.N. Eberlin, J.
Dupont, Synthesis (2004) 1155–1158.
Entry
Value
Density (15 ◦C) (g cm−3
)
0.87
4.2
Viscosity (40 ◦C) (mm2 s−1
Sulfur content (%)
)
1.8 mg kg−1
200
Water content (mg kg−1
Methanol content (%)
Biodiesel content (%)
Glycerol content (%)
)
0.05
>99.1
0.01
[9] J. Miao, H. Wan, Y. Shao, G. Guan, B. Xu, J. Mol. Catal. A: Chem. 348 (2011)
77–82.
[10] A.S. Amarasekara, O.S. Owereh, Catal. Commun. 11 (2010) 1072–1075.
[11] G. Rashinkar, S. Kamble, A. Kumbhar, R. Salunkhe, Catal. Commun. 12 (2011)
1442–1447.
[12] Z. Xu, H. Wan, J. Miao, M. Han, C. Yang, G. Guan, J. Mol. Catal. A: Chem. 332
(2010) 152–157.
3.5. The quality of the refined product
After reactions, the biodiesel was collected and dried in vacuum
for 5 h (110 ◦C, 0.01 Torr). The quality of the refined products was
investigated carefully (Table 6). The results showed that the quality
of the refined biodiesel achieved the high standard, which further
confirmed that the novel catalyst would be one of the best choices
for the reaction.
[13] D. Hao, F. Gong, W. Wei, G. Hu, G. Ma, Z. Su, J. Colloid Interface Sci. 323 (2008)
52–59.
[14] I.N. Martyanov, A. Sayari, Appl. Catal. A: Gen. 339 (2008) 45–52.
[15] P.K. Srivastava, M. Verma, Fuel 87 (2008) 1673–1677.
[16] T. Valliyappan, N.N. Bakhshi, A.K. Dalai, Bioresour. Technol. 99 (2008)
4476–4483.
[17] S.V. Ranganathan, S.L. Narasimhan, K. Muthukumar, Bioresour. Technol. 99
(2008) 3975–3981.
[18] D.E. Lopez, J.G. Goodwin, D.A. Bruce, S. Furuta, Appl. Catal. A: Gen. 339 (2008)
76–83.
4. Conclusion
[19] L. Zhang, M. Xian, Y. He, L. Li, J. Yang, S. Yu, X. Xu, Bioresour. Technol. 100 (2009)
4368–4373.
[20] D. Fang, J. Yang, C. Jiao, ACS Catal. 1 (2011) 42–47.
[21] Q. Wu, H. Chen, M. Han, D. Wang, J. Wang, Ind. Eng. Chem. Res. 46 (2007)
7955–7960.
[22] M. Ghiaci, B. Aghabarari, S. Habibollahi, A. Gil, Bioresour. Technol. 102 (2011)
1200–1204.
[23] X. Liang, G. Gong, H. Wu, J. Yang, Fuel 88 (2009) 613–616.
[24] Y.A. Elsheikh, Z. Man, M.A. Bustam, S. Yusup, C.D. Wilfred, Energy Convers.
Manage. 52 (2011) 804–809.
The novel solid acidic PIL has been synthesized through the
copolymerization of acidic ionic liquid oligomers and DVB. The
PIL showed high activities for the one-pot biodiesel synthesis from
the waste oil with high FFA content with the total yield over 99%.
High acidity, operational-simplicity and high stability were the key
feature of the process.
[25] T. Issariyakul, M.G. Kulkarni, A.K. Dalai, N.N. Bakhshi, Fuel Process. Technol. 88
(2007) 429–436.
Acknowledgement
[26] K. Jacobson, R. Gopinath, L.C. Meher, A.K. Dalai, Appl. Catal. B: Environ. 85 (2008)
86–91.
[27] F. Guo, Z. Fang, X.F. Tian, Y.D. Long, L.Q. Jiang, Bioresour. Technol. 102 (2011)
6469–6472.
The work was supported by National Natural Science Founda-
tion of China no. 21103111.
[28] R. Alcantara, J. Amores, L. Canoira, E. Fidalgo, M.J. Franco, A. Navarro, Biomass.
Bioenergy 18 (2000) 515–527.
References
[1] T.L. Greaves, C.J. Drummond, Chem. Rev. 108 (2008) 206–237.