Organic Letters
Letter
Notes
Scheme 4. Synthesis of 9a and 9b: Asymmetric Reduction of
9b
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. Mairi Haddow and Dr. Hazel Sparkes for
crystallographic determination of 3b, the University of Bristol
for a postgraduate fellowship (to H.R.C.), and AstraZeneca for
partial financial support and access to catalyst screening/
optimization facilities.
REFERENCES
■
(1) The ability to access selectively either enantiomer of a target (e.g.,
bioactive) molecule is widely appreciated, and methods of “measuring”
different complexity descriptors, including chirality, have been
reported: (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem.
2009, 52, 6752. (b) Lovering, F. MedChemComm 2013, 4, 515.
(c) Zayit, A.; Pinsky, M.; Elgavi, H.; Dryzun, C.; Avnir, D. Chirality
2011, 23, 17.
(2) For reviews of asymmetric alkene reduction, see: (a) Chi, Y.-X.;
Tang, W.-J.; Zhang, X. In Modern Rhodium-Catalyzed Organic
Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; pp 1−31.
(b) Genet, J. P. In Modern Reduction Methods; Andersson, P. G.,
Munslow, I. J., Eds.; Wiley-VCH: Weinheim, 2008; pp 3−38.
(c) Hartwig, J. In Organotransition Metal Chemistry, 1st ed.; University
Science Books: Sausalito, 2010; Chapter 15, pp 575−665.
conditions (Scheme 5). Ester 11 was obtained in 85% yield by
Scheme 5. Enzymatic Kinetic Resolution of ( )-11
(3) High selectivity has been reported for the asymmetric reduction
of acrylates: (a) Ohta, T.; Takaya, H.; Noyori, R. Tetrahedron Lett.
1990, 31, 7189. (b) Yamada, I.; Yamaguchi, M.; Yamagishi, T.
Tetrahedron: Asymmetry 1996, 7, 3339. (c) Uemura, T.; Zhang, X. Y.;
Matsumura, K.; Sayo, N.; Kumobayashi, H.; Ohta, T.; Nozaki, K.;
Takaya, H. J. Org. Chem. 1996, 61, 5510. (d) Yamada, I.; Ohkouchi,
M.; Yamaguchi, M.; Yamagishi, T. J. Chem. Soc., Perkin Trans. 1 1997,
1869. (e) Hoen, R.; Boogers, J. A. F.; Bernsmann, H.; Minnaard, A. J.;
Meetsma, A.; Tiemersma-Wegman, T. D.; de Vries, A. H. M.; de Vries,
J. G.; Feringa, B. L. Angew. Chem., Int. Ed. 2005, 44, 4209.
(f) Khumsubdee, S.; Burgess, K. ACS Catal. 2013, 3, 237. (g) Song,
S.; Zhu, S.-F.; Li, Y.; Zhou, Q.-L. Org. Lett. 2013, 15, 3722.
At pH 7.4, racemic 11 underwent selective hydrolysis, and
the corresponding acid 10 was isolated in 31% yield and 78% ee
and the unreacted ester 11 was recovered in 46% yield and 97%
ee (as assessed by chiral HPLC).19 We have not assigned the
absolute configurations of these products and this process has
not been optimized further in terms of yields and enantiomeric
purities.
(4) The synthesis of β-amino acids (including via reduction methods
to provide β2-derivatives) has been reviewed; see: Seebach, D.; Beck,
̌
A. K.; Capone, S.; Deniau, G.; Groselj, U.; Zass, E. Synthesis 2009,
In summary, we have shown that an unusual but synthetically
useful class of heterocyclic β-aminoacrylates undergo efficient
asymmetric reduction with a Rh-WALPHOS catalyst combina-
tion. This process works efficiently for the pyrrolidinone and
piperidinone carboxylic acid substrates 6b and 2b, respectively,
but the level of enantiomeric selectivity dramatically diminished
in the case of the seven-ring azepine substrate 9b.
2009, 1. Weiner, B.; Szymanski, W.; Janssen, D. B.; Minnaard, A. J.;
Feringa, B. L. Chem. Soc. Rev. 2010, 39, 1656. Rh-mediated
asymmetric hydrogenation of acrylates, β-amino acrylates, and β2-
dehydroamino esters has been reported: (a) Rocha Gonsalves, A.;
Bayon, J. C.; Pereira, M. M.; Serra, M. E. S.; Pereira, J. P. R. J.
Organomet. Chem. 1998, 553, 199. (b) Deng, J.; Hu, X.-P.; Huang, J.-
D.; Yu, S.-B.; Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2008,
73, 2015. (c) Yasutake, M.; Gridnev, I. D.; Higashi, N.; Imamoto, T.
Org. Lett. 2001, 3, 1701. (d) Elaridi, J.; Thaqi, A.; Prosser, A.; Jackson,
W. R.; Robinson, A. J. Tetrahedron: Asymmetry 2005, 16, 1309.
(e) Hoen, R.; Tiemersma-Wegman, T.; Procuranti, B.; Lefort, L.; de
Vries, J. G.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2007, 5,
267. (f) Qiu, L.; Prashad, M.; Hu, B.; Prasad, K.; Repic, O.; Blacklock,
T. J.; Kwong, F. Y.; Kok, S. H. L.; Lee, H. W.; Chan, A. S. C. Proc. Natl.
Acad. Sci. U. S. A. 2007, 104, 16787. (g) Bisset, A. A.; Shiibashi, A.;
Desmond, J. L.; Dishington, A.; Jones, T.; Clarkson, G. J.; Ikariya, T.;
Wills, M. Chem. Commun. 2012, 48, 11978. More recently, the Rh-
and Ru-mediated asymmetric hydrogenation of N-acyl β-aminoacrylic
acids (the acyclic variant of the systems described here) to provide β2-
(arylated)amino acids has been reported: Remarchuk, T.; Babu, S.;
Stults, J.; Zanotti-Gerosa, A.; Roseblade, S.; Yang, S.; Huang, P.; Sha,
C.; Wang, Y. Org. Process Res. Dev. 2014, 18, 135.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectroscopic data for all
new compounds and the X-ray crystallographic structure
determination of (S)-3b (PDF)
AUTHOR INFORMATION
■
Corresponding Author
Present Address
(5) For a review of the asymmetric hydrogenation of enamines, see:
Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713. Studies
have reported high selectivity for the asymmetric hydrogenation of
enamines and cyclic enamines: (a) Hou, G.-H.; Xie, J.-H.; Yan, P.-C.;
Zhou, Q.-L. J. Am. Chem. Soc. 2009, 131, 1366. (b) Zhou, Q.-L.; Xie,
⊥Ferring Pharmaceuticals, Kay Fiskers Plads 11, 2300
Copenhagen S, Denmark.
C
Org. Lett. XXXX, XXX, XXX−XXX