L. Shivakumar et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 107 (2013) 203–212
[11] W.-Y. Hsieh, S. Liu, Inorg. Chem. 44 (6) (2005) 2031–2038.
211
The susceptibilities of all strains of bacteria and a fungus to the
[
12] (a) J.J.R. Fraústo da Silva, R.J.P. Williams, The Biological Chemistry of the
Elements, Oxford University Press, 2001;
b) V.L. Pecoraro (Ed.), Manganese Redox Enzymes, VCH, New York, 1992.
[13] I. Sakiyan, E. Logoglu, S. Arslan, N. Sari, N. Sakiyan, BioMetals 17 (2004) 115–
20.
Bpmp and its corresponding mononuclear manganese complexes
were evaluated by measuring the minimum inhibitory concentra-
tion at which no growth was observed was taken as the MIC values.
(
1
Comparison of MIC values (in lg/mL) of Bpmp, Mn(III) complexes
and standard drugs against different bacteria are presented in Ta-
[
14] C.D. Samara, A.N. Papadopoulos, D.A. Malamatari, A. Tarushi, C.P. Raptopoulou,
A. Terzis, E. Samaras, D.P. Kessissoglou, J. Inorg. Biochem. 99 (2005) 864–875.
ble 3. The results indicated that, these compounds were active in
inhibiting the growth of tested organisms starting from 50 lg/mL
concentration. Complexes 1 and 2 appeared to have broad spec-
trum as it exhibit mild to moderate activity towards most of the
strains. This study suggests that these complexes can further be ex-
plored as specific antimicrobial drugs due to their polite activity
and less toxicity of metal ion.
[15] Y.-P. Li, P. Yang, Inorg. Chem. Commun. 14 (2011) 545–549.
[
16] M.N. Dehkordi, A.K. Bordbar, M.A. Mehrgardi, V. Mirkhani, J. Fluoresc. 21
2011) 1649–1658.
(
[
17] S.S. Mandal, U. Varshney, S. Bhattacharya, Bioconjugate Chem. 8 (6) (1997)
798–812.
[
[
18] I. Fridovich, Annu. Rev. Biochem. 64 (1995) 97–112.
19] G. Lupidi, F. Marchetti, N. Masciocchi, D.L. Reger, S. Tabassum, P. Astolfi, E.
Damiani, C. Pettinari, J. Inorg. Biochem. 104 (2010) 820–830.
[20] F.C. Friedel, D. Lieb, I. Ivanovic-Burmazovic, J. Inorg. Biochem. 109 (2012) 26–
2.
21] J. Prousek, Pure Appl. Chem. 79 (2007) 2325–2338.
3
[
Conclusion
[22] M.J. Daly, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A.
Venkateswaran, M. Hess, M.V. Omelchenko, H.M. Kostandarithes, K.S.
Makarova, L.P. Wackett, J.K. Fredrickson, D. Ghosal, Science 306 (2004)
On the basis of above studies, the general structure of the
Mn(III) complexes are proposed as shown in Fig. 1. The complexes
having distorted octahedral geometry with N, O as donor site from
Schiff base and N, N contributed from the neutral ligand o-phenan-
throline. Monodentate nature of anion acetate confirmed from the
FT-IR and indicates coordination with metal ion. The Mn(III) oxida-
tion state in 1 and 2 is highly stabilized by two Bpmp ligands. Thus
Bpmp could be used as a chelator for the removal of excess intra-
cellular Mn and the treatment of chronic Mn toxicity. In vitro DNA
binding studies reveal that the complexes bind to the DNA helix via
the partial intercalative interaction. The complexes 1 and 2 bind to
supercoiled plasmid pUC19 DNA in major groove and displays effi-
cient hydrolytic cleavage. The salen–manganese complexes 1 and 2
represent a new class of potential clinical agents. The order of SODs
like activities observed from spectroscopic assays is (2) > (1).
Moreover biological screening state that Schiff base complexes en-
hance the activity against the bacteria and fungi due to complexes
bearing polar properties, and this study helps to evaluate the
potentiality and effectiveness of newer Mn(III) complexes to use
as antibacterial agents.
1
025–1028.
[23] D.P. Riley, Chem. Rev. 99 (1999) 2573–2587.
[
[
24] W. Jiang, Y. Han, Q. Pan, T. Shen, C. Liu, J. Inorg. Biochem. 101 (2007) 667–677.
25] M. Devereux, D.O. Shea, A. Kellett, M. McCann, M. Walsh, D. Egan, C. Deegan, K.
Kedziora, G. Rosair, H. Muller-Bunz, J. Inorg. Biochem. 101 (2007) 881–892.
[26] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals,
second ed., Pergamon Press, Oxford, 1980.
[
[
[
[
27] A.I. Vogel, A Text Book of Quantitative Chemical Analysis, fifth ed., Longman,
London, 1989.
28] P. Kakkar, B. Das, P.N. Viswanathan, Ind. J. Biochem. Biophys. 21 (1984) 130–
132.
29] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 32 (1993) 2573–
2584.
30] S. Banerjee, S. Mondal, W. Chakraborty, S. Sen, R. Gachhui, R.J. Butcher, A.M.Z.
Slawin, C. Mandal, S. Mitra, Polyhedron 28 (2009) 2785–2793.
31] A. Wolfe, G.H. Shimer, T. Meehan, Biochemistry 26 (1987) 6392–6396.
32] J.B. Chaires, N. Dattagupta, D.M. Crothers, Biochemistry 21 (1982) 3933–3940.
33] G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 45–55.
[34] J.B. Suffredini, H.S. Sader, A.G. Goncalves, A.O. Reis, A.C. Gales, A.D. Varella, R.N.
Younes Brazil, J. Med. Biol. Res. 37 (2004) 379–384.
35] G.S. Girolami, T.B. Rauchfuss, R.J. Angelici, Synthesis and Technique in
Inorganic Chemistry, third ed., University Science Books, Sausalito, 1999. p.
254.
[
[
[
[
[
[
[
[
[
[
36] O. Pouralimardan, A.C. Chamayou, C. Janiak, H. Hosseini-Monfared Inorg, Chim.
Acta 360 (2007) 1599–1608.
37] K.R. Surati, B.T. Thaker, S.L. Oswal, R.N. Jadeja, V.K. Gupta, Struct. Chem. 18
(
2007) 295–310.
38] M. Salavati-Niasari, Z. Salimi, M. Bazarganipour, F. Davar, Inorg. Chim. Acta 362
2009) 3715–3724.
Acknowledgments
(
39] R. Karmakar, C.R. Choudhury, G. Bravic, J.P. Sutter, S. Mitra, Polyhedron 23
(2004) 949–954.
40] S. Belaid, A. Landreau, S. Djebbar, O. Benali-Baitich, G. Bouet, J.P. Bouchara, J.
Inorg. Biochem. 102 (2008) 63–69.
41] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fifth ed., J. Wiley, New York, 1997.
42] D.P. Singh, K. Kumar, C. Sharma, Eur. J. Med. Chem. 45 (2010) 1230–1236.
43] A. Neves, S.M.D. Erthal, I. Vencato, A.S. Ceccato, Y.P. Mascarenhas, O.R.
Nascimento, M.H. Corner, A.A. Batista, Inorg. Chem. 31 (1992) 4749–4755.
44] M. Bera, K. Biradha, D. Ray, Inorg. Chim. Acta 357 (2004) 3556–3562.
45] M. Matzapetakis, N. Karligiano, A. Bino, M. Dakanali, C.P. Raptopoulou, V.
Tangoulis, A. Terzis, J. Giapintzakis, A. Salifoglou, Inorg. Chem. 39 (2000) 40–
44.
46] K.R. Surati, B.T. Thaker, G.R. Shah, Synth. React. Inorg. Met.-Org. Nano-Met.
Chem. 38 (2008) 272–279.
47] Z. Lu, M. Yuan, F. Pan, S. Gao, D. Zhang, D. Zhu, Inorg. Chem. 45 (2006) 3538–
The author L. Shiva Kumar is thankful to the UGC, New Delhi for
the award of Rajiv Gandhi National Fellowship. We also thank
Head of the Department of Biotechnology, University of Mysore,
for providing the help in carrying out antimicrobial and nuclease
activities.
[
[
[
[
Appendix A. Supplementary material
[
[
3
548.
References
[
[
[
[
48] K.R. Surati, B.T. Thaker, Spectrochim. Acta (A) 75 (2010) 235–242.
49] K.R. Surati, Spectrochim. Acta (A) 79 (2011) 272–277.
50] O. Iranzo, Bioorg. Chem. 39 (2011) 73–87.
[
[
1] G.W. Yang, X.P. Xia, H. Tu, C.X. Zhao, Chem. Res. Appl. 7 (1995) 41–52.
2] V.L. Pecoraro, W.-Y. Hsieh, in: A. Sigel, H. Sigel (Eds.), Metal Ions in Biological
Systems: Manganese and its Role in Biological Processes, vol. 37, Marcel
Dekker, New York, 2000, p. 431.
51] B. Drahos, J. Kotek, P. Herman, I. Lukes, E. Tóth, Inorg. Chem. 49 (2010) 3224–
3238.
[
[
52] P. Yang, M.L. Guo, B.S. Yang, Chin. Sci. Bull. 39 (1994) 997.
53] B. Peng, Z. Wen-Hui, L. Yan, L. Han-Wen, L. Zhu, Transition Met. Chem. 34
[
3] R. Ji, K. Yu, L.L. Lou, C. Zhang, Y. Han, S. Pan, S. Liu, Inorg. Chem. Comm. 25
(
2012) 65–69.
(
2009) 231–237.
[
[
[
[
4] T. Katsuki, Coord. Chem. Rev. 140 (1995) 189–214.
[
[
[
54] M. Waring, J. Mol. Biol. 13 (1965) 269–282.
55] L. Chen, J. Liu, J. Chen, C. Tan, J. Inorg. Biochem. 102 (2008) 330–341.
56] J. Qian, X.F. Ma, H.Z. Xu, J.L. Tian, J. Shang, Y. Zhang, S.P. Yan, Eur. J. Inorg. Chem.
5] W. Li, Z. Li, L. Li, D. Liao, Z. Jiang, J. Solid State Chem. 180 (2007) 2973–2977.
6] A. Puglisi, G. Tabbi, G. Vecchio, J. Inorg. Biochem. 98 (2004) 969–976.
7] S. Majumder, S. Hazra, S. Dutta, P. Biswas, S. Mohanta, Polyhedron 28 (2009)
2
010 (20) (2010) 3109–3116.
57] H. Wu, J. Yuan, Y. Bai, H. Wang, G. Pan, J. Kong, J. Photochem. Photobiol., B: Biol.
16 (2012) 13–21.
2
473–2479.
[
[
[
8] J.J.R. Frausto da Silva, R.J.P. Williams, The Biological Chemistry of the Elements,
Clarendon Press, Oxford, 1993. p. 4.
9] S.R. Doctrow, K. Huffman, C.B. Marcus, C. Tocco, E. Malfroy, C.A. Adinolfi, H.
Kruk, K. Baker, N. Lazarowych, J. Mascarenhas, B. Malfroy, J. Med. Chem. 45
1
[
[
58] J.B. LePecq, C. Paoletti, J. Mol. Biol. 27 (1967) 87–106.
59] R.F. Pasternack, M. Cacca, B. Keogh, T.A. Stephenson, A.P. Williams, F.J. Gibbs, J.
Am. Chem. Soc. 113 (1991) 6835–6840.
(
2002) 4549–4558.
[
60] B.C. Baguley, M. Lebret, Biochemistry 23 (1984) 937–943.
[
10] W. Park, D. Lim, Bioorg. Med. Chem. Lett. 19 (2009) 614–617.