Sollis (GSK) for kindly preparing18 and providing a sample of
3-fluoroazetidinium chloride 5 for X-ray analysis.
Notes and references
{ Crystal data for 5: C3H7ClFN, M = 111.55, monoclinic, space group
˚
P21/n, a = 6.583(3), b = 8.278(3), c = 9.052(3) A, b = 97.556(12)u, U =
489.0(3) A , F(000) = 232, Z = 4, Dc = 1.515 Mg m23, m = 0.645
3
˚
mm21(Mo-Ka, l = 0.71073 A). The data were collected at T = 93(2) K,
˚
2553 reflections (3.35 , h , 25.33u) were measured on a Rigaku Mercury
CCD diffractometer yielding 843 unique data (Rmerg = 0.0359).
Conventional R = 0.0887 for 69 reflections with I ¢ 2s(I), GOF =
1.000. Final wR2 = 0.0648 for all data (64 refined parameters). The largest
peak in the residual map is 0.239 e A23. CCDC 606604.Crystal data for 6:
˚
C6H15Br2FN2, M = 294.02, monoclinic, space group P21/c, a = 7.0901(16),
˚
3
˚
b = 12.250(3), c = 12.581(3) A, b = 106.266(6)u, U = 1049.0(4) A , F(000) =
576, Z = 4, Dc = 1.862 Mg m23, m = 7.691 mm21(Mo-Ka, l = 0.71073 A).
˚
The data were collected at T = 93(2) K, 6572 reflections (2.37 , h ,
25.37u) were measured on a Rigaku Mercury CCD diffractometer yielding
1887 unique data (Rmerg = 0.0333). Conventional R = 0.0284 for 1707
reflections with I > 2s(I), GOF = 1.026. Final wR2 = 0.0589 for all
data (177 refined parameters). The largest peak in the residual map is
0.646 e A23. CCDC 606605. For crystallographic data in CIF or other
˚
electronic format see DOI: 10.1039/b606334a
Scheme 1 Reagents i. TsCl, NEt3, DCM, 0 uC, 23 h, 97%; ii. Pd(OH)2/
C, H2, EtOH, 23 uC, 99%; iii. Deoxofluor, DCM, 23 uC, 18 h, 67%; iv. 13,
NaH, DMF, 100 uC, 17 h, 36%; v. HBr (33%), phenol in AcOH, 90 uC,
96 h, 100%.
1 J. P. Snyder, N. S. Chandrakumar, S. N. Rao, D. P. Spangler and
D. C. Lankin, J. Am. Chem. Soc., 1993, 115, 3356–3357.
2 J. P. Snyder, N. S. Chandrakumar, H. Sato and D. C. Lankin, J. Am.
Chem. Soc., 2000, 122, 544–545.
In this study we have also prepared the 3-fluoro-1,5-diazacy-
clooctane HBr salt 6. This allowed an exploration of a
conformationally flexible larger ring system, and in this particular
case, the fluorine has the potential to participate in two
3 A. M. Sum, D. C. Lankin, K. Hardcastle and J. P. Snyder, Chem.–Eur.
J., 2005, 11, 1579–1591.
4 J. P. Snyder, G. L. Grunewald, F. A. Romero, I. Y. Oren and
D. C. Lankin, Org. Lett., 2004, 4, 3557–3560.
5 S. Wolfe, Acc. Chem. Res., 1972, 5, 102–111.
6 S. F. Nelsen, Acc. Chem. Res., 1978, 11, 14–20.
7 P. R. Rablen, R. W. Hoffmann, D. A. Horvat and W. T. Borden,
J. Chem. Soc., Perkin Trans. 2, 1999, 1719–1726.
8 D. O’Hagan, C. Bilton, J. A. K. Howard, L. Knight and D. J. Tozer,
J. Chem. Soc., Perkin Trans. 2, 2000, 605–607.
9 C. R. S. Briggs, D. O’Hagan, H. S. Rzepa and A. M. Z. Slawin,
J. Fluorine Chem., 2004, 125, 19–25.
10 C. R. S. Briggs, M. J. Allen, D. O’Hagan, D. J. Tozer, A. M. Z. Slawin,
A. E. Goeta and J. A. K. Howard, Org. Biomol. Chem., 2004, 2,
732–740.
11 J. A. K. Howard, V. J. Hoy, D. O’Hagan and G. T. Smith, Tetrahedron,
1996, 52, 12613–12622.
12 J. D. Dunitz and R. Taylor, Chem.–Eur. J., 1997, 3, 89–98.
13 J. D. Dunitz, ChemBioChem, 2004, 5, 614–621.
+
…
intramolecular C–F
N
interactions. The synthetic route to 6
started from the glycerol ether 9 followed by tosylation, ether
cleavage and then fluorination to generate 12. Reaction of 12 with
the bis-N-tosylamide 13 generated the desired ring system with 14,
and the HBr salt 6 was isolated after HBr treatment of 14. These
transformations are summarised in Scheme 1. It is obvious from
the resultant X-ray structure shown in Fig. 2 that the C–F bond
occupies an axial orientation. There was no evidence of any
disorder in the structure and particularly of any molecules with the
C–F bond lying in an equatorial conformation.
DFT absolute energy calculations comparing the 6ax and 6eq
free cation structures indicate a preference for the axial conforma-
tional isomer of 9.2 kcal mol21. This energy difference is
comparable to that found2 for 2a (8.9 kcal mol21), again reflecting
14 3-Fluoroazetidinium chloride was obtained from the GSK compound
collection.
15 T. W. Bradley, P. J. Wilson and D. J. Tozer, J. Chem. Phys., 2001, 115,
9233–9242.
+
16 T. H. Dunning, J. Chem. Phys., 1971, 55, 716–723.
17 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin,
J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,
S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen,
M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.
18 L. Provins, B. J. Van Keulen, J. Surtees, P. Talaga and B. Christophe,
PCT Int. Appl. WO, 087064 A1, 2003, .
…
the presence of two C–F N interactions.
+
…
In summary the intramolecular C–F N interaction has been
explored in a small and a large ring system and in both cases it is
significant in influencing the ring conformation. The magnitude of
+
…
a single C–F N interaction is similar to that of a good hydrogen
bond and it merits consideration in the design of biologically
relevant amine analogues, where the C–F bond can be inserted as a
strategic tool for influencing conformation without dramatically
affecting the steric profile of a given molecule. In view of the fact
that most aliphatic amines are protonated at physiological pH,
fluorine incorporation b to amines will be expected to have a
dramatic influence on the solution conformation of bio-active
amines, through both pKa modulation and the profound
b-fluorine ammonium interaction.
We thank the BBSRC and GSK for a CASE Studentship
(NEJG), the EPSRC for a DTA Studentship (AMT), and Steve
3192 | Chem. Commun., 2006, 3190–3192
This journal is ß The Royal Society of Chemistry 2006