European Journal of Inorganic Chemistry
10.1002/ejic.201900417
FULL PAPER
A. M. Rodriguez, Organometallics 2015, 34, 3196-3208; f) P.
Hormnirun, E. L. Marshall, V. C. Gibson, R. I. Pugh, A. J. P. White,
Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15343-15348; g) J. W. Hu,
C. Kan, H. Y. Ma, Inorg. Chem. 2018, 57, 11240-11251; h) J. W. Hu,
C. Kan, H. B. Wang, H. Y. Ma, Macromolecules 2018, 51, 5304-
5312; i) M. D. Jones, L. Brady, P. McKeown, A. Buchard, P. M.
Schafer, L. H. Thomas, M. F. Mahon, T. J. Woodman, J. P. Lowe,
Chemical Science 2015, 6, 5034-5039; j) M. D. Jones, S. L.
Hancock, P. McKeown, P. M. Schafer, A. Buchard, L. H. Thomas,
M. F. Mahon, J. P. Lowe, Chem. Commun. 2014, 50, 15967-15970;
k) J. E. Kasperczyk, Macromolecules 1995, 28, 3937-3939; l) K. M.
Osten, P. Mehrkhodavandi, Acc. Chem. Res. 2017, 50, 2861-2869;
m) X. Pang, R. L. Duan, X. Li, C. Y. Hu, X. H. Wang, X. S. Chen,
Macromolecules 2018, 51, 906-913; n) A. Pietrangelo, S. C. Knight,
A. K. Gupta, L. J. Yao, M. A. Hillmyer, W. B. Tolman, J. Am. Chem.
Soc. 2010, 132, 11649-11657; o) A. Sauer, A. Kapelski, C. Fliedel,
S. Dagorne, M. Kol, J. Okuda, Dalton Trans. 2013, 42, 9007-9023;
p) S. Tabthong, T. Nanok, P. Sumrit, P. Kongsaeree, S. Prabpai, P.
Chuawong, P. Hormnirun, Macromolecules 2015, 48, 6846-6861; q)
H. B. Wang, Y. Yang, H. Y. Ma, Macromolecules 2014, 47, 7750-
CDCl
28.5 (Ar), 123.1 (Ar), 123.0 (Ar), 122.3 (Ar), 121.4 (Ar), 119.3 (Ar), 116.7
Ar), 59.7 (CH ), 58.9 (CH ), 56.3 (CH ), 52.4 (CH), 51.0 (CH ), 35.0
C(CH ), 34.3 (C(CH ), 31.8 (C(CH ), 29.8 (C(CH ).
3 C
, δ , ppm); 158.3 (Ar), 154.1 (Ar), 140.8 (Ar), 135.6 (Ar), 129.1 (Ar),
1
(
(
2
2
2
2
3
)
3
3
)
3
), 31.9 (CH
2
3
)
3
3 3
)
+
39 2 2
Calculated m/z [C26H N O ] = 411.3006, found 411.3041.
2
Al(2)Me: 2H (0.409 g, 1.0 mmol) was dissolved in toluene (10 ml) to which
AlMe (2 M hexane, 0.50 ml, 1.0 mmol) was added. This was stirred for 4
3
hours after which time the solvent was removed and the solid was
recrystallised from hexane/toluene mixture (pale yellow solid, 0.19 g, 0.42
1
mmol, 42%). H NMR (400 MHz, C
6
D
6 H
, δ , ppm); 7.55 (d, J = 2.5 Hz, 1H),
7
1
.19 (m, 2H), 6.89 (d, J = 2.5 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 6.52 (m,
H), 4.31 (d, J = 13.4 Hz, 1H), 3.00 (t, J = 9.2 Hz, 1H), 2.72 (d, J = 13.4
Hz, 1H), 2.63 (m, 1H), 2.46 (d, J = 9.4 Hz, 1H), 1.69 (s, 9H), 1.48 (s, 1H),
1
3
.44 (s, 9H), 1.34 (d, J = 9.6 Hz, 1H), 1.27 (m, 1H), 1.14 (m, 1H), -0.24 (s,
H). 13C{ H} NMR (100 MHz, C
1
6 6 C
D , δ , ppm); 168.3 (CN),166.3 (Ar), 156.3
7764; r) H. B. Wang, Y. Yang, H. Y. Ma, Inorg. Chem. 2016, 55,
(
1
(
(
7
Ar), 139.3 (Ar), 138.2 (Ar), 136.9 (Ar), 133.6 (Ar), 123.6 (Ar), 123.2 (Ar),
22.8 (Ar), 122.0 (Ar), 117.5 (Ar), 115.4 (Ar), 66.6 (CH ), 57.0 (CH ), 56.8
CH), 50.9 (CH ), 35.6 (C(CH ), 34.3 (C(CH ), 32.2 (C(CH ), 31.4
CH ), 29.9 (C(CH ). Elemental analysis (C27 ) Calcd in %: C,
2.29; H, 8.31; N, 6.24. Found: C, 72.17; H, 8.44; N, 6.19.
7356-7372; s) S. Yang, K. Nie, Y. Zhang, M. Q. Xue, Y. M. Yao, Q.
2
2
Shen, Inorg. Chem. 2014, 53, 105-115; t) Z. Y. Zhong, P. J. Dijkstra,
J. Feijen, Angew. Chem., Int. Ed. Engl. 2002, 41, 4510-4513; u) S.
Gesslbauer, H. Cheek, A. J. P. White, C. Romain, Dalton Trans.
2
3
)
3
3
)
3
3 3
)
2
3
)
3
2 2
H37AlN O
2018, 47, 10410-10414.
[
5]
a) O. J. Driscoll, C. K. C. Leung, M. F. Mahon, P. McKeown, M. D.
Jones, Eur. J. Inorg. Chem. 2018, 5129-5135; b) S. L. Hancock, M.
F. Mahon, M. D. Jones, Dalton Trans. 2013, 42, 9279-9285; c) S. M.
Kirk, G. Kociok-Kohn, M. D. Jones, Organometallics 2016, 35, 3837-
Al(2a)Me: 2aH
g, 0.49 mmol, 49%). H NMR (400 MHz, C
2
(0.411 g, 1.0 mmol), washed with hexane (white solid, 0.22
1
6 6 H
D , δ , ppm); 7.52 (s, 1H), 7.22
3
843; d) P. McKeown, J. Brown-Humes, M. G. Davidson, M. F.
Mahon, T. J. Woodman, M. D. Jones, Dalton Trans. 2017, 46, 5048-
057; e) E. L. Whitelaw, M. G. Davidson, M. D. Jones, Chem.
(m, 2H), 6.84 (s, 1H), 6.68 (m, 2H), 4.02 (d, J = 13.4 Hz, 1H), 3.89 (t, J =
1
3
0
2.5 Hz, 1H), 2.82 (d, J = 14.0 Hz, 2H), 2.64 (t, J = 11.2 Hz, 2H), 1.91 (m,
5
H), 1.59 (s, 9H), 1.42 (s, 9Hz), 1.24 (m, 1H), 1.10 (m, 1H) 1.01 (m, 1H), -
Commun. 2011, 47, 10004-10006; f) E. L. Whitelaw, M. D. Jones,
M. F. Mahon, Inorg. Chem. 2010, 49, 7176-7181; g) E. L. Whitelaw,
G. Loraine, M. F. Mahon, M. D. Jones, Dalton Trans. 2011, 40,
.34 (s, 3H). 1 C{ H} NMR (100 MHz, C
3
1
6 6 C
D , δ , ppm); 162.1 (Ar), 156.2
(
1
(
(
Ar), 139.6 (Ar), 138.4 (Ar), 130.2 (Ar), 123.8 (Ar), 123.1 (Ar), 122.6 (Ar),
21.7 (Ar), 121.3 (Ar), 120.8 (Ar), 115.5 (Ar), 58.1 (CH ), 57.0 (CH ), 53.8
CH ), 52.5 (CH), 50.4 (CH ), 35.5 (C(CH ), 34.3 (C(CH ), 32.2
C(CH ), 30.0 (C(CH ), 30.0 (CH ).
11469-11473; h) S. Dagorne, C. Fliedel, in Modern
2
2
Organoaluminum Reagents: Preparation, Structure, Reactivity and
Use, Vol. 41 (Eds.: S. Woodward, S. Dagorne), 2013, pp. 125-171.
P. McKeown, M. G. Davidson, G. Kociok-Kohn, M. D. Jones, Chem.
Commun. 2016, 52, 10431-10434.
A. Pilone, K. Press, I. Goldberg, M. Kol, M. Mazzeo, M. Lamberti, J.
Am. Chem. Soc. 2014, 136, 2940-2943.
A. Stopper, T. Rosen, V. Venditto, I. Goldberg, M. Kol, Chem. Eur.
J. 2017, 23, 11540-11548.
A. Pilone, N. De Maio, K. Press, V. Venditto, D. Pappalardo, M.
Mazzeo, C. Pellecchia, M. Kol, M. Lamberti, Dalton Trans. 2015, 44,
2
2
3
)
3
3 3
)
[
[
[
[
6]
7]
8]
9]
3
)
3
3
)
3
2
Acknowledgements
We acknowledge the University of Bath for funding and the
2
157-2165.
K. Nie, W. K. Gu, Y. M. Yao, Y. Zhang, Q. Shen, Organometallics
013, 32, 2608-2617.
[
10]
EPSRC for a postdoctoral fellowship for PM (EP/P0164051/1).
2
Keywords: lactide • catalyst • biopolymer • aluminium
[
1]
a) R. Auras, B. Harte, S. Selke, Macromol. Biosci. 2004, 4, 835-864;
b) L. T. Lim, R. Auras, M. Rubino, Prog. Polym. Sci. 2008, 33, 820-
852; c) K. M. Nampoothiri, N. R. Nair, R. P. John, Bioresour. Technol.
2010, 101, 8493-8501.
[
[
2]
3]
B. D. Ulery, L. S. Nair, C. T. Laurencin, J. Polym. Sci. Pt. B-Polym.
Phys. 2011, 49, 832-864.
a) I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J. M. Kenny,
Polym. Degrad. Stab. 2010, 95, 2126-2146; b) B. Gupta, N.
Revagade, J. Hilborn, Prog. Polym. Sci. 2007, 32, 455-482; c) O.
Martin, L. Averous, Polymer 2001, 42, 6209-6219; d) R. M. Rasal,
A. V. Janorkar, D. E. Hirt, Prog. Polym. Sci. 2010, 35, 338-356; e) J.
W. Rhim, H. M. Park, C. S. Ha, Prog. Polym. Sci. 2013, 38, 1629-
1652; f) C. M. Thomas, Chem. Soc. Rev. 2010, 39, 165-173; g) H.
Tsuji, Macromol. Biosci. 2005, 5, 569-597; h) E. T. H. Vink, K. R.
Rabago, D. A. Glassner, P. R. Gruber, Polym. Degrad. Stab. 2003,
80, 403-419.
[
4]
a) J. Beament, M. F. Mahon, A. Buchard, M. D. Jones,
Organometallics 2018, 37, 1719-1724; b) B. M. Chamberlain, M.
Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J.
Am. Chem. Soc. 2001, 123, 3229-3238; c) H. Z. Du, X. Pang, H. Y.
Yu, X. L. Zhuang, X. S. Chen, D. M. Cui, X. H. Wang, X. B. Jing,
Macromolecules 2007, 40, 1904-1913; d) S. M. Guillaume, E.
Kirillov, Y. Sarazin, J. F. Carpentier, Chem. Eur. J. 2015, 21, 7988-
8003; e) M. Honrado, A. Otero, J. Fernandez-Baeza, L. F. Sanchez-
Barba, A. Garces, A. Lara-Sanchez, J. Martinez-Ferrer, S. Sobrino,
This article is protected by copyright. All rights reserved.