Chemical Fixation of Carbon Dioxide with Terminal Epoxides
COMMUNICATIONS
then cooledto ambient temperature, the pressure released,
andthe contents transferredto a 50 mL round-bottom flask.
Unreactedsubstrate andsolvent were removedunder vacuum,
andthe residue was purifiedby silica gel column chromatog-
raphy (eluent: petroleum ether/EtOAc 1/4) to give the cyclic
carbonate as a colorless liquid.
O
O
O
O
O
C
C
H
O-
H
O
H
O
H
O-
O
O
O
H
D
C4H9
H
O
C4H9
H
C4H9
H
H
C4H9
D
D
D
H
H
5
DMAP
DMAP
4
DMAP
+
+
Path a ( Plausible Reaction Mechanism )
Acknowledgements
O
O
O
+
H
O
H
O
O
C DMAP
We thank the State Key Project of Basic Research (Project 973)
(No. G2000048007), Shanghai Municipal Committee of Science
and Technology, and the National Natural Science Foundation
of China for financial support (20025206 and 20272069).
H
O-
O
O
O
D
O-
C4H9
C4H9
H
H
C4H9
H
H
D
D
C4H9
D
H
H
O
O
+
H
H
8
4
C
DMAP
Path b
O-
+
C
O
DMAP
N
DMAP: Me2N
References and Notes
Scheme 3.
[1] The Rio Declaration, UnitedNations Conference on
Environment andDevelopment, Rio de Janeiro, June 3
14, 1992.
[2] Green Chemistry, (Eds.: P. T. Anastas, T. C. Williamson),
ACS Symposium Series 626, American Chemical Society,
Washington, DC, 1996.
parallel requirement of both Lewis base andLewis acid
in the fixation of the CO2.[4,12,16,21] As the matter of fact,
this is a Lewis base andLewis acidco-catalyzedsystem.
Alcohols have low Lewis acidity which cannot activate
CO2, whereas it is well known that acids will react with
organic bases to give a salt. Only phenols (pKa: 7.0 ~
10.5) can selectively activate CO2. m-Nitrophenol (pKa:
7.15) can combine with organic bases to some extent as
well because of its higher acidity. Thus, it has the lowest
activity for this chemical fixation of CO2.
In conclusion, we foundthat cyclic carbonate can be
obtainedquantitatively at the reaction conidtions
(3.57 MPa of CO2 initial pressure; reaction temperature
120 8C) from the reaction of epoxides 1 with carbon
dioxide in the presence of catalytic amounts of phenol
andan organic base. This is a very efficient non-metal
Lewis acid(phenol) andLewis base (amine) co-cata-
lyzedsystem andthe cyclic carbonates 2 are obtainedin
excellent yields as the sole products. Moreover, the
reaction mechanism has been disclosed in this paper.
Efforts are underway to elucidate the further mecha-
nistic details of this reaction and to identify systems
enabling a similar carboxylation of other substrates and
subsequent transformation thereof.
[3] L. Hough, J. E. Priddle, R. S. Theobald, Adv. Carbohydr.
Chem. 1960, 15, 91.
[4] a) V. Amarnath, A. D. Broom, Chem. Rev. 1977, 77, 183;
b) E. Haruki, T. Ito, A. Yamamoto, N. Yamazaki, F.
Higashi, S. Inoue, Organic and Bio-oganic Chemistry of
Carbon dioxide, (Eds.: S. Inore, N. Yamazaki), Kodansha
Ltd., Tokyo, Japan, 1982.
[5] a) J. Giff, G. Gigg, J. Chem. Soc. C 1967, 431; b) J. Giff,
G. Gigg, J. Chem. Soc. C 1967, 1865.
[6] R. L. Letsinger, K. K. Ogilvie, J. Org. Chem. 1967, 32,
296.
[7] K. Tatsuta, K. Akimoto, M. Annaka, Y. Ohmo, M.
Kinoshita, Bull. Chem. Soc. Jpn. 1985, 58, 1699.
[8] B. M. Trost, D. M. T. Chan, J. Org. Chem. 1983, 48, 3346.
[9] V. Bhushan, T. K. Chakraborty, S. Chandrasekaran, J.
Org. Chem. 1984, 49, 3974.
[10] D. H. Gibson, Chem. Rev. 1996, 96, 2063 andreferences
citedtherein.
[11] A. A. G. Shaikh, S. Sivaram, Chem. Rev. 1996, 96, 951.
[12] D. J. Darensbourg, M. W. Holtcamp, Coord. Chem. Rev.
1996, 153, 155.
[13] a) M. Ratzenhofer, H. Kisch, Angew. Chem. Int. Ed.
Engl. 1980, 19, 317; b) H. Kisch, R. Millini, I.-J. Wang,
Chem. Ber. 1986, 119, 1090; c) W. Dumler, H. Kisch,
Chem. Ber. 1990, 123, 277.
Experimental Section
[14] a) N. Kihara, N. Hara, T. Endo, J. Org. Chem. 1993, 58,
6198; b) T. Iwasaki, N. Kihara, T. Endo, Bull. Chem. Soc.
Jpn. 2000, 73, 713.
Representative Procedure for the Reactions of
Epoxides with Carbon Dioxide
[15] T. Aida, S. Inoue, J. Am. Chem. Soc. 1983, 105, 1304.
[16] H. S. Kim, J. J. Kim, B. G. Lee, O. S. Jung, H. G, Jang,
S. O. Kang, Angew. Chem. Int. Ed. 2000, 39, 4096.
[17] W. J. Kruper, D. V. Dellar, J. Org. Chem. 1995, 60, 725.
[18] R. L. Paddock, S. T. Nguyen, J. Am. Chem. Soc. 2001,
123, 11498.
A 100 mL stainless pressure reactor was chargedwith p-
methoxyphenol (23 mg, 0.18 mmol), propylene oxide (2.6 g,
45 mmol), DMAP (22 mg, 0.18 mmol), andCH Cl2 (0.5 mL).
2
The reaction vessel was placedunder a constant pressure
(3.57 MPa) of carbon dioxide for 5 min to allow the system to
equilibrate andthen heatedto 120 8C for 48 h. The vessel was
Adv. Synth. Catal. 2003, 345, 337 340
339