Inorganic Chemistry
Article
(26) Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K. I.
Homogeneous catalytic system for reversible dehydrogenation
-hydrogenation reactions of nitrogen heterocycles with reversible
interconversion of catalytic species. J. Am. Chem. Soc. 2009, 131,
8410−8412.
substrate size-dependent catalyst for CO2 conversion. J. Am. Chem.
Soc. 2016, 138, 2142−2145.
(44) Lu, B.-B.; Yang, J.; Liu, Y.-Y.; Ma, J.-F. A polyoxovanadate-
resorcin[4]arene-based porous metal-organic framework as an
efficient multifunctional catalyst for the cycloaddition of CO2 with
epoxides and the selective oxidation of sulfides. Inorg. Chem. 2017, 56,
11710−11720.
(45) Cheng, W.; Xue, Y.-S.; Luo, X.-M.; Xu, Y. A rare three-
dimensional POM-based inorganic metal polymer bonded by CO2
with high catalytic performance for CO2 cycloaddition. Chem.
Commun. 2018, 54, 12808−12811.
(46) Lin, Z.-J.; Zheng, H.-Q.; Chen, J.; Zhuang, W. E.; Lin, Y.-X.; Su,
J.-W.; Huang, Y.-B.; Cao, R. Encapsulation of phosphotungstic acid
into metal-organic frameworks with tunable window sizes: screening
of PTA@MOF catalysts for efficient oxidative desulfurization. Inorg.
Chem. 2018, 57, 13009−13019.
(47) Zheng, X.-X.; Shen, L.-J.; Chen, X.-P.; Zheng, X.-H.; Au, C.-T.;
Jiang, L.-L. Amino-modified Fe-terephthalate metal-organic frame-
work as an efficient catalyst for the selective oxidation of H2S. Inorg.
Chem. 2018, 57, 10081−10089.
(48) Lu, B.-B.; Yang, J.; Che, G.-B.; Pei, W.-Y.; Ma, J.-F. Highly
stable copper(I)-based metal-organic framework assembled with
resorcin[4]arene and polyoxometalate for efficient heterogeneous
catalysis of azide-alkyne “Click” reaction. ACS Appl. Mater. Interfaces
2018, 10, 2628−2636.
(49) Larcher, D.; Tarascon, J. M. Towards greener and more
sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7,
19−29.
(50) Diouf, B.; Pode, R. Potential of lithium-ion batteries in
renewable energy. Renewable Energy 2015, 76, 375−380.
(51) Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for
high-energy batteries. Nat. Nat. Nanotechnol. 2017, 12, 194−206.
(52) Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. From lithium-
ion to sodium-ion batteries: advantages, challenges, and surprises.
Angew. Chem., Int. Ed. 2018, 57, 102−120.
(53) Gu, C.; Hosono, N.; Zheng, J.-J.; Sato, Y.; Kusaka, S.; Sakaki,
S.; Kitagawa, S. Design and control of gas diffusion process in a
nanoporous soft crystal. Science 2019, 363, 387−391.
(54) Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H.-C.
From fundamentals to applications: a toolbox for robust and
multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611−
8638.
(55) Zhang, H.; Liu, X.; Wu, Y.; Guan, C.; Cheetham, A. K.; Wang,
J. MOF-derived nanohybrids for electrocatalysis and energy storage:
current status and perspectives. Chem. Commun. 2018, 54, 5268−
5288.
(56) Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy
storage for transportation-approaching the limits of, and going
beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854−
7863.
(27) Laitar, D. S.; Muller, P.; Sadighi, J. P. Efficient Homogeneous
̈
Catalysis in the Reduction of CO2 to CO. J. Am. Chem. Soc. 2005,
127, 17196−17197.
(28) Cokoja, M.; Bruckmeier, D. C. C.; Rieger, B.; Herrmann, W. A.;
̈
Kuhn, F. E. Transformation of carbon dioxide with homogeneous
transition-metal catalysts: a molecular solution to a global challenge?
Angew. Chem., Int. Ed. 2011, 50, 8510−8537.
(29) Schneidewind, J.; Adam, R.; Baumann, W.; Jackstell, R.; Beller,
M. Low-Temperature Hydrogenation of Carbon Dioxide to Methanol
with a Homogeneous Cobalt Catalyst. Angew. Chem., Int. Ed. 2017,
56, 1890−1893.
(30) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W.
Hydrogenation of carbon dioxide to methanol by using a
homogeneous ruthenium-phosphine catalyst. Angew. Chem., Int. Ed.
2012, 51, 7499−7502.
(31) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda,
K. Mg-Al mixed oxides as highly active acid - base catalysts for
cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 1999,
121, 4526−4527.
(32) Kuruppathparambil, R. R.; Babu, R.; Jeong, H. M.; Hwang, G.-
Y.; Jeong, G. S.; Kim, M.-I.; Kim, D.-W.; Park, D.-W. A solid solution
zeolitic imidazolate framework as a room temperature efficient
catalyst for the chemical fixation of CO2. Green Chem. 2016, 18,
6349−6356.
(33) Gao, C.-Y.; Tian, H.-R.; Ai, J.; Li, L.-J.; Dang, S.; Lan, Y.-Q.;
Sun, Z.-M. A microporous Cu-MOF with optimized open metal sites
and pore spaces for high gas storage and active chemical fixation of
CO2. Chem. Commun. 2016, 52, 11147−11150.
(34) Nguyen, P. T. K.; Nguyen, H. T. D.; Nguyen, H. N.; Trickett,
́
C. A.; Ton, Q. T.; Gutierrez-Puebla, E.; Monge, M. A.; Cordova, K.
́
E.; Gandara, F. New Metal-Organic Frameworks for Chemical
Fixation of CO2. ACS Appl. Mater. Interfaces 2018, 10, 733−744.
(35) He, H.; Sun, Q.; Gao, W.; Perman, J. A.; Sun, F.; Zhu, G.;
Aguila, B.; Forrest, K.; Space, B.; Ma, S. A stable metal-organic
framework featuring a local buffer environment for carbon dioxide
fixation. Angew. Chem., Int. Ed. 2018, 57, 4657−4662.
(36) Miralda, C. M.; Macias, E. E.; Zhu, M.; Ratnasamy, P.; Carreon,
M. A. Zeolitic imidazole framework-8 catalysts in the conversion of
CO2 to chloropropene carbonate. ACS Catal. 2012, 2, 180−183.
(37) Drake, T.; Ji, P.; Lin, W. Site isolation in metal-organic
frameworks enables novel transition metal catalysis. Acc. Chem. Res.
2018, 51, 2129−2138.
(38) Diercks, C. S.; Liu, Y.; Cordova, K. E.; Yaghi, O. M. The role of
reticular chemistry in the design of CO2 reduction catalysts. Nat.
Mater. 2018, 17, 301−307.
(39) Ding, D.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon
capture and conversion using metal-organic frameworks and MOF-
based materials. Chem. Soc. Rev. 2019, 48, 2783−2828.
(40) Ge, W.; Wang, X.; Zhang, L.; Du, L.; Zhou, Y.; Wang, J. Fully-
occupied Keggin type polyoxometalate as solid base for catalyzing
CO2 cycloaddition and Knoevenagel condensation. Catal. Sci. Technol.
2016, 6, 460−467.
(41) Beyzavi, M. H.; Klet, R. C.; Tussupbayev, S.; Borycz, J.;
Vermeulen, N. A.; Cramer, C. J.; Stoddart, J. F.; Hupp, J. T.; Farha, O.
K. A hafnium-based metal-organic framework as an efficient and
multifunctional catalyst for facile CO2 fixation and regioselective and
enantioretentive epoxide activation. J. Am. Chem. Soc. 2014, 136,
15861−15864.
(57) Wang, B.; Ryu, J.; Choi, S.; Song, G.; Hong, D.; Hwang, C.;
Chen, X.; Wang, B.; Li, W.; Song, H.-K.; Park, S.; Ruoff, R. S. Folding
graphene film yields high areal energy storage in lithium-ion batteries.
ACS Nano 2018, 12, 1739−1746.
(58) Liu, J.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Energy
storage materials from nature through nanotechnology: A sustainable
route from reed plants to a silicon anode for lithium-ion batteries.
Angew. Chem., Int. Ed. 2015, 54, 9632−9636.
(59) Chen, C.; Xie, X.; Anasori, B.; Sarycheva, A.; Makaryan, T.;
Zhao, M.; Urbankowski, P.; Miao, L.; Jiang, J.; Gogotsi, Y. MoS2-on-
MXene Heterostructures as Highly Reversible Anode Materials for
Lithium-Ion Batteries. Angew. Chem., Int. Ed. 2018, 57, 1846−1850.
(60) Wang, L.; He, X.; Li, J.; Sun, W.; Gao, J.; Guo, J.; Jiang, C.
Nano-structured phosphorus composite as high-capacity anode
materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51,
9034−9037.
(42) Han, Q. X.; He, C.; Zhao, M.; Qi, B.; Niu, J. Y.; Duan, C. Y.
Engineering chiral polyoxometalate hybrid metal-organic frameworks
for asymmetric dihydroxylation of olefins. J. Am. Chem. Soc. 2013,
135, 10186−10189.
(43) Li, P.-Z.; Wang, X.-J.; Liu, J.; Lim, J. S.; Zou, R.; Zhao, Y. A.
Triazole-containing metal-organic framework as a highly effective and
(61) Xie, J. J.; Zhang, Y.; Han, Y. L.; Li, C. L. High-capacity
molecular scale conversion anode enabled by hybridizing cluster-type
G
Inorg. Chem. XXXX, XXX, XXX−XXX