ACS Combinatorial Science
Research Article
(b) Tosovska, P.; Arora, P. S. Oligooxopiperazines as Nonpeptidic
α-Helix Mimetics. Org. Lett. 2010, 12, 1588−1591. (c) Biros, S. M.;
Moisan, L.; Mann, E.; Carella, A.; Zhai, D.; Reed, J. C.; Rebek, J.
Heterocyclic α-Helix Mimetics for Targeting Protein−Protein Inter-
actions. Bioorg. Med. Chem. Lett. 2007, 17, 4641−4645. (d) Maity, P.;
In summary, pyridazine-based α-helix mimetics display side
chains in a manner that closely resembles the i, i + 3/i + 4, and
i + 7 positions of peptide-derived α-helices. Starting from a few
readily accessible versatile synthetic intermediates, we developed
several synthetic sequences that allow for inclusion of a variety of
side chains including aliphatic, basic, aromatic, and heteroaromatic
residues through a number of C−C, C−N, and C−O bond-
forming reactions. The robust synthesis enabled the explora-
tion of the three accessible vectors and was demonstrated by
preparation of several small libraries. The application of this
methodology to relevant medicinal chemistry targets will be
reported in due course.
Konig, B. Synthesis and Structure of 1,4-Dipiperazino Benzenes: Chiral
̈
Terphenyl-type Peptide Helix Mimetics. Org. Lett. 2008, 10, 1473−
1476. (e) Jayatunga, M. K. P.; Thompson, S.; Hamilton, A. D. α-Helix
Mimetics: Outwards and Upwards. Bioorg. Med. Chem. Lett. 2014, 24,
717−724. (f) Moon, H.; Lee, W. S.; Oh, M.; Lee, H.; Lee, J. H.; Im, W.;
Lim, H.-S. Design, Solid-Phase Synthesis, and Evaluation of a Phenyl-
Piperazine-Triazine Scaffold as α-Helix Mimetics. ACS Comb. Sci. 2014,
16, 695−701. (g) Lee, J. H.; Oh, M.; Kim, H. S.; Lee, H.; Im, W.; Lim,
H.-S. Converting One-Face α-Helix Mimetics into Amphiphilic α-Helix
Mimetics as Potent Inhibitors of Protein−Protein Interactions. ACS
Comb. Sci. 2016, 18, 36−42. (h) Drennen, B.; Scheenstra, J. A.; Yap, J. L.;
Chen, L.; Lanning, M. E.; Roth, B. M.; Wilder, P. T.; Fletcher, S.
Structural Re-engineering of the α-Helix Mimetic JY-1−106 into Small
Molecules: Disruption of the Mcl-1−Bak-BH3 Protein−Protein
Interaction with 2,6-Di-Substituted Nicotinates. ChemMedChem 2016,
11, 827−833. (i) Davis, J. M.; Truong, A.; Hamilton, A. D. Synthesis of a
2,3′;6′,3″-Terpyridine Scaffold as an α-Helix Mimetic. Org. Lett. 2005, 7,
5405−5408. (j) Shaginian, A.; Whitby, L. R.; Hong, S.; Hwang, I.;
Farooqi, B.; Searcey, M.; Chen, J.; Vogt, P. K.; Boger, D. L. Design,
Synthesis, and Evaluation of an α-Helix Mimetic Library Targeting
Protein-Protein Interactions. J. Am. Chem. Soc. 2009, 131, 5564−5572.
(k) Peters, M.; Trobe, M.; Tan, H.; Kleineweischede, R.; Breinbauer, R.
A Modular Synthesis of Teraryl-Based α-Helix Mimetics, Part 1:
Synthesis of Core Fragments with Two Electronally Differentiated
Leaving Groups. Chem. - Eur. J. 2013, 19, 2442−2449. (l) Peters, M.;
Trobe, M.; Breinbauer, R. A Modular Synthesis of Teraryl-Based
α-Helix Mimetics, Part 2: Synthesis of 5-Pyridine Boronic Acid Pinacol
Ester Building Blocks with Amino Acid Side Chains in 3-Position. Chem.
- Eur. J. 2013, 19, 2450−2456. (m) Trobe, M.; Peters, M.; Grimm, S. H.;
Breinbauer, R. The Development of a Modular Synthesis of Teraryl-
Based α-Helix Mimetics as Potential Inhibitors of Protein−Protein
Interactions. Synlett 2014, 25, 1202−1214.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the ACS
■
S
Experimental procedures, characterization data and X-ray
data for the structure determination of 10d (PDF)
Crystallographic information file for compound 10d
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank Steve B. Coffey, Chris Limberakis, and
Benjamin N. Rocke for their chemistry contributions and Justin
Stroh for HRMS. The authors thank Brian Samas for X-ray
structure determination of 10d (CCDC 1485770).
(5) Gellman, S. H. Foldamers: A Manifesto. Acc. Chem. Res. 1998, 31,
173−180.
ABBREVIATIONS
PPI protein−protein interaction
(6) (a) Voisin-Chiret, A. S.; Burzicki, G.; Perato, S.; De Giorgi, M.;
Franchini, C.; Sopkova-de Oliveira Santos, J.; Rault, S. Aromatic
Garlands, as New Foldamers, to Mimic Protein Secondary Structure.
Tetrahedron 2012, 68, 4381−4389. (b) Lee, J. H.; Zhang, Q.; Jo, S.; Chai,
S. C.; Oh, M.; Im, W.; Lu, H.; Lim, H.-S. Novel Pyrrolopyrimidine-
Based α-Helix Mimetics: Cell-Permeable Inhibitors of Protein−Protein
Interactions. J. Am. Chem. Soc. 2011, 133, 676−679.
■
REFERENCES
■
(1) (a) Davis, J. M.; Tsou, L. K.; Hamilton, A. D. Synthetic Non-
Peptide Mimetics of α-Helices. Chem. Soc. Rev. 2007, 36, 326−334.
(b) Yin, H.; Hamilton, A. D. Strategies for Targeting Protein−Protein
Interactions With Synthetic Agents. Angew. Chem., Int. Ed. 2005, 44,
4130−4163. (c) Bullock, B. N.; Jochim, A. L.; Arora, P. S. Assessing
Helical Protein Interfaces for Inhibitor Design. J. Am. Chem. Soc. 2011,
133, 14220−14223. (d) Cummings, C. G.; Hamilton, A. D. Disrupting
Protein−Protein Interactions with Non-Peptidic, Small Molecule
α-Helix Mimetics. Curr. Opin. Chem. Biol. 2010, 14, 341−346.
(2) (a) Azzarito, V.; Long, K.; Murphy, N. S.; Wilson, A. J. Inhibition of
α-Helix-Mediated Protein−Protein Interactions Using Designed
Molecules. Nat. Chem. 2013, 5, 161−173. (b) Wilson, A. J. Helix
Mimetics: Recent Developments. Prog. Biophys. Mol. Biol. 2015, 119,
33−40.
(7) Duncton, M. A. J. Minisci Reactions: Versatile CH-Functionaliza-
tions for Medicinal Chemists. MedChemComm 2011, 2, 1135−1161.
(8) Cowden, C. Use of N-Protected Amino Acids in the Minisci
Radical Alkylation. Org. Lett. 2003, 5 (23), 4497−4499.
(9) Volonterio, A.; Moisan, L.; Rebek, J. Synthesis of Pyridazine-Based
Scaffolds as α-Helix Mimetics. Org. Lett. 2007, 9, 3733−3736.
(10) The regiochemistry of 6a was verified by conversion to 10d
followed by X-ray crystallography. See Supporting Information.
(11) (a) Martinelli, J. R.; Clark, T. P.; Watson, D. A.; Munday, R. H.;
Buchwald, S. L. Palladium-catalyzed aminocarbonylation of aryl
chlorides at atmospheric pressure: the dual role of sodium phenoxide.
Angew. Chem., Int. Ed. 2007, 46, 8460−8463. (b) Kotha, S.; Lahiri, K.;
Kashinath, D. Recent applications of the Suzuki−Miyaura cross-
coupling reaction in organic synthesis. Tetrahedron 2002, 58, 9633−
9695. (c) In Practical Synthetic Organic Chemistry: Reactions, Principles,
and Techniques. Chapter 4: Nucleophilic Aromatic Substitution; Caron, S.
Wiley, John & Sons: NJ, 2011; pp 237−253.
(3) For recent reviews of drug-discovery in beyond rule of five space,
see: (a) Doak, B. C.; Zheng, J.; Dobritzsch, D.; Kihlberg, J. How Beyond
Rule of 5 Drugs and Clinical Candidates Bind to Their Targets. J. Med.
Chem. 2016, 59, 2312−2327. (b) Doak, B. C.; Over, B.; Giordanetto, F.;
Kihlberg, J. Oral Druggable Space beyond the Rule of 5: Insights from
Drugs and Clinical Candidates. Chem. Biol. 2014, 21, 1115−1142.
(c) Kodadek, T.; McEnaney, P. J. Towards vast Libraries of Scaffold-
Diverse, Conformationally Constrained Oligomers. Chem. Commun.
2016, 52, 6038−6059.
(12) For a recent report on this valuable medicinal chemistry template,
see: Wlochal, J.; Bailey, A. Facile Synthesis of 4-Aryl and Alkyl
Substituted, N6-Alkylated Pyridazine-3,6-Diamines. Tetrahedron Lett.
2015, 56, 6791−6794.
(4) (a) Kutzki, O.; Park, H. O.; Ernst, J. T.; Orner, B. P.; Yin, H.;
Hamilton, A. D. Development of a Potent Bcl-xL Antagonist Based on
α-Helix Mimicry. J. Am. Chem. Soc. 2002, 124, 11838−11839.
D
ACS Comb. Sci. XXXX, XXX, XXX−XXX