Table 1 Some of the calculated excitation energies (E), wavelengths
l) and oscillatory strengths (f) for low lying singlet (Sn) states for
str. 1 and str. 2, which match well with the experimental values of
The IR spectral values from the experimental and theore-
tical calculations are shown in Table 2 along with the simu-
lated Raman spectral features. It is convincingly clear that the
N–H stretching, N–H in plane bending and N–H out of plane
bending frequency values for DIB-b and DIB-g are in
accordance with the theoretical values (see Table 2). A notable
feature for the inter and intramolecular H-bonding is seen
from the experimental and theoretical IR data, especially from
the C–H stretching frequency. As denoted earlier, DIB-b
(str. 1) has a dihedral angle similar for both benzimidazole
groups while the DIB-g isomer has two different dihedral
angles. As a result, the C–H stretching frequency is split for
DIB-g and serves as a good analytical tool to distinguish
between the two isomers (see ESIw for theoretical IR spectra).
A comparison between the C–H stretching values in plane
bending and out of plane bending is listed in Table 2 (also see
ESIw for the simulated spectra and the table comparing all the
IR and Raman frequencies obtained experimentally and
theoretically).
(
DIB-b and DIB-g, respectively
Excited Molecular orbital
(DE/eV)
l/nm
(calc., exp.)
Molecule states
f
DIB-g
S4
LUMO – HOMO (3.509)
LUMO+1 – HOMO
0.2835 (353, 360)
S10
S14
LUMO – HOMOꢀ2 (4.11) 0.1898 (301, 305)
LUMO+1 – HOMO
LUMO – HOMOꢀ2 (4.32) 0.1701 (282, 293)
LUMO+1 – HOMOꢀ1
LUMO+1 – HOMO
LUMO – HOMOꢀ3 (4.42) 0.2688 (276, 273)
LUMO – HOMOꢀ2
S16
LUMO+1 – HOMOꢀ1
LUMO+1 – HOMO
LUMO – HOMO (3.89)
DIB-b
S5
S14
0.2333 (318, 305)
LUMO – HOMOꢀ1 (4.43) 0.3585 (279, 260)
LUMO+1 – HOMO
LUMO+2 – HOMO
Table 2 Experimental and calculated vibration frequencies and their
tentative assignments
In summary, we have shown the effect of H-bonding on the
photophysical properties of benzimidazole derivatives. The
presence of intra or intermolecular H-bonding brings about a
rapid change in the electron charge density distribution of the
low lying singlet states, which affects the photoluminescence to
a large extent as demonstrated by both the experimental and
theoretical data.
DIB-g
DIB-b
Raman
Raman
FTIR exp./calc. calc.
Assignment FTIR exp./calc. calc.
b
N–H str
C–H str
3442/3543
3164, 3055,
2
1563/1593
1138/1140
3573
3202,
899/3118, 3074 3143
3449/3552
3056, 2669,
3581
3135
b
a
a
a
2426 /3180
The authors thank CSIR, India, for financial help.
c
N–H ipbc
C–H ipb
1524
1153,
1138
1060
1521/1521
1124/1171
1524
1153,
1110
967,
934
—
Notes and references
d
C–H opb
946/934
973/997
754/751
1
A. U. Acuna, A. Costela and J. M. Munoz, J. Phys. Chem., 1986,
0, 2807.
A. U. Acuna, F. Amat, J. Catalan, A. Costela, J. M. Figuera and
9
d
N–H opb
754/742
—
2
a
b
c
J. M. Munoz, Chem. Phys. Lett., 1986, 132, 567.
strong broadening. str = stretching. ipb = in plane bending.
opb = out of plane bending.
d
3 E. M. Kosover and D. Huppert, Annu. Rev. Phys. Chem., 1986, 37,
27.
D. L. William and A. Heller, J. Phys. Chem.,, 1970, 74, 4473.
1
4
Further evidence of the inter and intramolecular H-bonding
5 P. T. Chou, W. S. Yu, Y. C. Chen, C. Y. Wei and S. S. Martinez,
J. Am. Chem. Soc., 1998, 120, 12927.
comes from the theoretical calculations on str. 1 and str. 2, which
agree with DIB-b and DIB-g, respectively. The intermolecular
H-bonded DIB-b (str. 1) shows a dipole moment of 3.4624 D
while the intramolecular H-bonded DIB-g (str. 2) has a dipole
moment of 5.275 D, which indicates a more unsymmetrical charge
distribution in the ground state geometry for str. 2 (see ESIw for
the frontier molecular orbital picture). The point group symmetry
6
7
8
9
P. Chowdhury, S. Panja, A. Chatterjee, P. Bhattacharya and
S. J. Chakravorti, J. Photochem. Photobiol., A, 2004, 170, 131.
N. Kumar, S. Chakravorti and P. Chowdhury, J. Mol. Struct.,
2008, 891, 351.
P. Chowdhury, S. Panja, A. Chattetjee, P. Bhattacharya and
S. Chakravorti, J. Photochem. Photobiol., A, 2006, 173, 106.
R. G. Parr and W. Wang, Density Functional Theory of Atoms and
Molecules, Oxford University Press, Oxford, 1989.
was found to be C
1
for both structures i.e., str. 1 and str. 2.
10 F. Jensen, Introduction to Computational Chemistry, Wiley,
England, 1999.
The experimental and the calculated absorption energies as
well as the dipole moment and oscillatory strength are reported
in Table 1. Analysis of the TD-DFT wavefunction for DIB-g
shows the predicted absorption peaks at 353 nm (f = 0.2835),
1
1
1 J. Goodman and L. E. Brus, J. Am. Chem. Soc., 1978, 100, 7472.
2 J. L. Herek, S. Pedersen, L. Banares and A. H. Zewail, J. Chem.
Phys., 1992, 97, 9046.
1
1
3 K. J. Jalkanen and S. Suhai, Chem. Phys., 1996, 208, 81.
4 W. G. Han, K. J. Jalkanen, M. Elstner and S. Suhai, J. Phys.
Chem. B, 1998, 102, 2587.
3
01 nm (f = 0.1898), 282 nm (f = 0.1701) and 276 nm
(f = 0.2688), which matches well with the experimental values
1
1
1
1
1
5 Z. Deng, P. L. Polavarapu, S. J. Ford, L. Hetcht, L. D. Barron,
C. S. Ewig and K. J. Jalkanen, J. Phys. Chem., 1996, 100, 2025.
6 Z. S. Shi, K. Chen, Z. G. Liu and N. R. Kallenbach, Chem. Rev.,
of 360 nm, 305 nm, 293 nm and 273 nm, respectively. Similarly
for DIB-b the simulated absorption peaks at 318 nm (f = 0.233)
and 279 nm (f = 0.358) match with the experimental values at
2
006, 106, 1877.
7 P. Mukhopadhay, G. Zuber and D. N. Beratan, Biophys. J., 2008,
95, 5574.
8 C. D. Poon and E. T. Samulski, J. Am. Chem. Soc., 2000, 122,
3
05 nm and 260 nm, respectively (see ESIw). We observe the
experimental optical band gap to be in excellent agreement with
the theoretical values for different low lying singlet states, S1,
S10, S14, S16 of the DIB-g isomer and S6 and S14 states for the
DIB-b isomer.
5
642.
9 G. Xue, Z. Juenfong, G. Shi, Y. Wu and B. Shuen, J. Chem. Soc.,
Perkin Trans. 2, 1989, 33.
20 S. Yurdakul and M. Kurt, J. Mol. Struct., 2003, 650, 181.
4
428 | Chem. Commun., 2009, 4426–4428
This journal is ꢁc The Royal Society of Chemistry 2009