A R T I C L E S
Auletta et al.
specific combinations of molecular pairs.8 A wide variety of
examples has been reported, ranging from biological systems,9-11
rupture of covalent bonds,12 and chiral discrimination13 to
rupture forces of individual charge-transfer complexes14 and
cation complexation.15
HG systems are characterized by fast complexation/decomplex-
ation kinetics, and thus, the guest moieties decomplex and rebind
spontaneously many times during the recording of an AFM
force-distance curve as long as the tip stays in close proximity
to the â-CD SAM. Thus, thermodynamic equilibrium, as defined
for our systems including the cantilever, is reached for each
data point of a force-distance curve.
The statistical analysis of the pull-off data for the ferrocene-
â-CD system showed a periodic distribution of forces.24,25 In
accordance with the long timescale of the AFM pull-off
experiments relative to the complexation kinetics and the
thermodynamic equilibrium situation that should result from it,
the force quantum (55 ( 10 pN) attributed to the single HG
complex rupture force was independent of the number of
available guests, the loading rate, and the length of the spacer
between the guest and the surface.24,25
Several studies exist in which the dissociation of molecular
pairs has been theoretically modeled.16-19 Furthermore, several
attempts to correlate the force values measured in single
molecule force spectroscopy with thermodynamic parameters
of molecular recognition or surface adhesion have been
reported.16a,c However, studies on molecular unbinding events
and host-guest (HG) complex rupture forces under thermody-
namic equilibrium conditions remain scarce,20,21 while for far-
from-equilibrium systems the unbinding forces are, depending
on the regime, highly loading rate-dependent,22 as demonstrated
by Evans and co-workers.23
The work presented in this article is a systematic study of
single HG complex rupture forces between â-CD SAMs and
several guest molecules confined onto the surface of gold-coated
AFM tips by adsorption in mixed SAMs. Four different thiol-
modified guests have been used to vary the HG interaction
strength. The complexation constants for model guest com-
pounds in solution or on â-CD SAMs have been determined
by isothermal titration calorimetry (ITC) and surface plasmon
resonance (SPR) measurements. The notion of thermodynamic
equilibrium allows us to correlate quantitatively the measured
pull-off force values with the ∆G° of the complexes using a
newly developed quantitative model that is based on the
evaluation of the energy potential landscape of the tip-surface
interactions.
Previous studies in our groups have been carried out on the
complexation behavior of ferrocene moieties immobilized on
AFM tips and heptathioether â-cyclodextrin (â-CD) self-
assembled monolayers (SAMs) on Au(111).24,25 â-CD is a cyclic
oligosaccharide consisting of seven glucose units linked via
R-1-4 glycosidic bonds that is able to form inclusion complexes
with a variety of neutral and charged organic molecules in
aqueous solutions, mainly via hydrophobic interactions.26,27 Such
(8) For recent reviews, see: (a) Hugel, T.; Seitz, M. Macromol. Rapid Commun.
2001, 22, 989-1016. (b) Zlatanova, J.; Lindsay, S. M.; Leuba, S. H. Prog.
Biophys. Mol. Biol. 2000, 74, 37-61. (c) Janshoff, A.; Neitzert, M.;
Oberdo¨rfer, Y.; Fuchs, H. Angew. Chem., Int. Ed. 2000, 39, 3212-3237.
(d) Samor`ı, B. Chem.-Eur. J. 2000, 6, 4249-4255.
(9) (a) Florin, E.-L.; Moy, V. T.; Gaub, H. E. Science 1994, 264, 415-417.
(b) Moy, V. T.; Florin, E.-L.; Gaub, H. E. Science 1994, 266, 257-259.
(10) Lee, G. U.; Chrisey, L. A.; Colton, R. J. Science 1994, 266, 771-773.
(11) Ros, R.; Schwesinger, F.; Anselmetti, D.; Kubon, M.; Scha¨fer, R.;
Plu¨ckthun, A.; Tiefenauer, L. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 7402-
7405.
Results and Discussion
We have previously reported that the force quantum of 55 (
10 pN, attributed to the rupture of a single inclusion complex
of â-CD heptathioether 1 (Chart 1A) on Au(111) and the
ferrocenylalkanethiol 4 (Chart 1B) immobilized on an AFM tip,
arises from specific HG interactions, as was proven by
systematically leaving out the host or guest from the system
and by competition experiments with a guest in solution.24 This
quantum does not depend on spacer length, loading rate, and
guest concentration on the tip.24,25 Four different thiol-modified
guests, 2, 3, 5, and 6 (Chart 1B), were synthesized to investigate
how changes in the HG motif would affect the rupture force.
The synthesis of adsorbate 1 and preparation of SAMs on
gold surfaces have been described elsewhere.28 Compounds 2,
3, 5, and 6 were synthesized by reacting suitable amines with
5-bromopentanoic acid and followed by substitution of the
bromide for thioacetate and subsequent deprotection. Mixed
SAMs of 0.2% or 1% of these guest thiols with 2-mercaptoeth-
anol on gold substrates and on gold-modified AFM tips were
prepared from 1 mM (total thiol concentration) solutions in
ethanol for 16 h at room temperature.
(12) Grandbois, M.; Beyer, M.; Rief, M.; Clausen-Schaumann, H.; Gaub, H. E.
Science 1999, 283, 1727-1730.
(13) McKendry, R.; Theoclitou, M.-E.; Rayment, T.; Abell, C. Nature 1998,
391, 566-568.
(14) Skulason, H.; Frisbie, C. D. J. Am. Chem. Soc. 2002, 124, 15125-15133.
(15) Kado, S.; Kimura, K J. Am. Chem. Soc. 2003, 125, 4560-4564.
(16) (a) Grubmuller, H.; Heymann, B.; Tavan, P. Science 1996, 271, 997-999.
(b) Heymann, B.; Grubmuller, H. Phys. ReV. Lett. 2000, 84, 6126-6129.
(c) Heymann, B.; Grubmuller, H. Biophys. J. 2001, 81, 1295-1313. (d)
Rief, M.; Grubmuller, H. ChemPhysChem 2002, 3, 255-261.
(17) Bell, G. I. Science 1978, 200, 618-627.
(18) (a) Hummer, G.; Szabo, A. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 3658-
3661. (b) Hummer, G.; Szabo, A. Biophys. J. 2003, 85, 5-15.
(19) (a) Seifert, U. Phys. ReV. Lett. 2000, 84, 2750-2753. (b) Seifert, U.
Europhys. Lett. 2002, 58, 792-798.
(20) (a) Rief, M.; Clausen-Schaumann, H.; Gaub, H. E. Nat. Struct. Biol. 1999,
6, 346-349. (b) Essevaz-Roulez, B.; Bockelmann, U.; Heslot, F. Proc.
Natl. Acad. Sci. U.S.A. 1997, 94, 11935-11940.
(21) Tromas, C.; Rojo, J.; de la Fuente, J. M.; Barrientos, A. G.; Garc´ıa, R.;
Penade´s, S. Angew. Chem., Int. Ed. 2001, 40, 3052-3055.
(22) (a) Rief, M.; Gautel, M.; Osterhelt, F.; Fernandez, J. M.; Gaub, H. E. Science
1997, 276, 1109-1112. (b) Fritz, J.; Katopodis, A. G.; Kolbinger, F.;
Anselmetti, D. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 12283-12288. (c)
Marszalek, P. E.; Lu, H.; Li, H.; Carrion-Vazquez, M.; Oberhauser, A. F.
Nature 1999, 402, 100-103. (d) Strunz, T.; Oroszlan, K.; Shafer, R.;
Gu¨ntherodt, H.-J. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11277-11282.
(e) Evans E.; Ludwig, F. J. Phys.: Condens. Matter 2000, 12, 315-320.
(f) Baumgartner, W.; Hinterdorfer, P.; Ness, W.; Raab, A.; Vestweber, D.
Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 4005-4010. (g) Lee, I.; Marchant.
R. E. Surf. Sci. 2001, 491, 433-443.
(23) (a) Evans, E.; Ritchie, K. Biophys. J. 1997, 72, 1541-1555. (b) Merkel,
R.; Nassoy, P.; Leung, A.; Ritchie, K.; Evans, E. Nature 1999, 397, 50-
53.
Figure 1 shows a schematic representation of the supramo-
lecular single molecule force spectroscopy experiment with an
arbitrary surface-confined guest. Force-displacement curves for
guest surface coverages on the tip obtained from 0.2% and 1%
solutions show single, as well as characteristic multiple, pull-
off events, as shown for 6 in Figure 2A.
(24) Scho¨nherr, H.; Beulen, M. W. J.; Bu¨gler, J.; Huskens, J.; van Veggel, F.
C. J. M.; Reinhoudt, D. N.; Vancso, G. J. J. Am. Chem. Soc. 2000, 122,
4963-4967.
(25) Zapotoczny, S.; Auletta, T.; De Jong, M. R.; Scho¨nherr, H.; Huskens, J.;
van Veggel, F. C. J. M.; Reinhoudt, D. N.; Vancso, G. J. Langmuir 2002,
18, 6988-6994.
(26) (a) Wenz, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 803-822. (b) Chem.
ReV. 1998, 98, 1741-2076. (c) Szejtli, J. ComprehensiVe Supramolecular
Chemistry; Pergamon Press: Oxford, 1996; Vol. 3.
(28) De Jong, M. R.; Huskens, J.; Reinhoudt, D. N. Chem.-Eur. J. 2001, 7,
4164-4170.
(27) Rekharsky, M. V.; Inoue, Y. Chem. ReV. 1998, 98, 1875-1917.
9
1578 J. AM. CHEM. SOC. VOL. 126, NO. 5, 2004