Organometallics
Article
priate Matching of the Ligand (L) and Counterion (X−). Organo-
metallics 2015, 34, 1759−1765.
(6) (a) Hintermann, L.; Labonne, A. Catalytic hydration of Alkynes
and its application in synthesis. Synthesis 2007, 2007, 1121−1150.
(b) Alonso, F.; Beletskaya, I. P.; Yus, M. Transition-Metal-Catalyzed
Addition of Heteroatom-Hydrogen Bonds to Alkynes. Chem. Rev.
2004, 104, 3079−3160.
(7) Teles, J. H.; Brode, S.; Chabanas, M. Cationic Gold(I)
Complexes: Highly Efficient Catalysts for the Addition of Alcohols
to Alkynes. Angew. Chem., Int. Ed. 1998, 37, 1415−1418.
(8) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Highly
Efficient AuI-Catalyzed Hydration of Alkynes. Angew. Chem., Int. Ed.
2002, 41, 4563−4565.
(9) Hayashi, Tanaka, and co-workers (see ref 8) reported low
catalyst loadings (100 ppm) and low amounts of acid promoter (4
mol %) only for the hydration of 1-octyne. For all other alkynes, the
catalyst loading typically ranged from 0.2 to 1 mol %, while the acid
(21) (a) Hashmi, A. S. K. Homogeneous Gold Catalysis Beyond
Assumptions and Proposals-Characterized Intermediates. Angew.
Chem., Int. Ed. 2010, 49, 5232−5241. (b) Obradors, C.;
Echavarren, A. M. Intriguing mechanistic labyrinths in gold(I)
catalysis. Chem. Commun. 2014, 50, 16−28.
(22) (a) Schmidbaur, H.; Schier, A. Gold η2-Coordination to
Unsaturated and Aromatic Hydrocarbons: The Key Step in Gold-
Catalyzed Organic Transformations. Organometallics 2010, 29, 2−23.
and reference therein. (b) Brooner, R. E. M.; Widenhoefer, R.
Cationic, Two-Coordinate Gold π Complexes. Angew. Chem., Int. Ed.
2013, 52, 11714−11724. (c) Liu, L.; Hammond, G. B. Recent
advances in the isolation and reactivity of organogold complexes.
Chem. Soc. Rev. 2012, 41, 3129−3139.
(23) Wang, W.; Kumar, M.; Hammond, G. B.; Xu, B. Enhanced
Reactivity in Homogeneous Gold Catalysis through Hydrogen
Bonding. Org. Lett. 2014, 16, 636−639.
(24) Attar, S.; Bearden, W. H.; Alcock, N. W.; Alyea, E. C.; Nelson,
J. H. Phosphole complexes of gold(I) halides: comparison of solution
and solid-state structures by a combination of solution and CP/MAS
phosphorus-31 NMR spectroscopy and x-ray crystallography. Inorg.
Chem. 1990, 29, 425−433.
loading varied from 25 to 50 mol %.
I
́
(10) Marion, N.; Ramon, R. S.; Nolan, S. P. [(NHC)Au ]-Catalyzed
Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. J.
Am. Chem. Soc. 2009, 131, 448−449.
(11) Zhdanko, A.; Maier, M. M. The Mechanism of Gold(I)-
Catalyzed Hydroalkoxylation of Alkynes: An Extensive Experimental
Study. Chem. - Eur. J. 2014, 20, 1918−1930.
(25) (a) Zuccaccia, D.; Belpassi, L.; Rocchigiani, L.; Tarantelli, F.;
Macchioni, A. A Phosphine Gold(I) π-Alkyne Complex: Tuning the
Metal−Alkyne Bond Character and Counterion Position by the
Choice of the Ancillary Ligand. Inorg. Chem. 2010, 49, 3080−3082.
(b) Zuccaccia, D.; Belpassi, L.; Tarantelli, F.; Macchioni, A. Ion
Pairing in Cationic Olefin−Gold(I) Complexes. J. Am. Chem. Soc.
2009, 131, 3170−3171.
(12) Ebule, R. E.; Malhotra, D.; Hammond, G. B.; Xu, B. Ligand
Effects in the Gold Catalyzed Hydration of Alkynes. Adv. Synth. Catal.
2016, 358, 1478−1481.
(13) Zhdanko, A.; Maier, M. E. Explanation of Counterion Effects in
Gold(I)-Catalyzed Hydroalkoxylation of Alkynes. ACS Catal. 2014, 4,
2770−2775.
́
́
(26) (a) Cordon, J.; Lopez-de-Luzuriaga, J.; Monge, M.
Experimental and Theoretical Study of the Effectiveness and Stability
of Gold(I) Catalysts Used in the Synthesis of Cyclic Acetals.
Organometallics 2016, 35, 732−740. (b) Kumar, M.; Jasinski, J.;
Hammond, G. B.; Xu, B. Alkyne/Alkene/Allene-Induced Dispropor-
tionation of Cationic Gold(I) Catalyst. Chem. - Eur. J. 2014, 20,
3113−3119.
(14) (a) Romero, N. A.; Klepser, B. M.; Anderson, C. E. Au(III)-
Catalyzed Tandem Amination-Hydration of Alkynes: Synthesis of α-
(N-2-Pyridonyl)ketones. Org. Lett. 2012, 14, 874−877. (b) Fernandez,
G. A.; Picco, A. S.; Ceolin, M. R.; Chopa, A. B.; Silbestri, G. F.
Synthesis and Structural Characterization of Water-Soluble Gold(I)
N-Heterocyclic Carbene Complexes. An X-ray Absorption Fine
Structure Spectroscopy (XAFS) Study. Organometallics 2013, 32,
6315−6323. (c) Xu, X. Y.; Kim, S. H.; Zhang, X.; Das, A. K.; Hirao,
H.; Hong, S. H. Abnormal N-Heterocyclic Carbene Gold(I)
Complexes: Synthesis, Structure, and Catalysis in Hydration of
Alkynes. Organometallics 2013, 32, 164−171. (d) Czegeni, C. E.;
Papp, G.; Katho, A.; Joo, F. Water-soluble gold(I)−NHC complexes
of sulfonated IMes and SIMes and their catalytic activity in hydration
of alkynes. J. Mol. Catal. A: Chem. 2011, 340, 1−8. (e) Almassy, A.;
Nagy, C. E.; Benyei, A. C.; Joo, F. Novel Sulfonated N-Heterocyclic
Carbene Gold(I) Complexes: Homogeneous Gold Catalysis for the
Hydration of Terminal Alkynes in Aqueous Media. Organometallics
2010, 29, 2484−2490.
(15) Xu, Y.; Hu, X.; Shao, J. J.; Yang, G.; Wu, Y.; Zhang, Z.
Hydration of alkynes at room temperature catalyzed by gold(I)
isocyanide compounds. Green Chem. 2015, 17, 532−537.
(16) Gatto, M.; Belanzoni, P.; Belpassi, L.; Biasiolo, L.; Del Zotto,
A.; Tarantelli, F.; Zuccaccia, D. Solvent-, Silver-, and Acid-Free
NHC−Au−X Catalyzed Hydration of Alkynes. The Pivotal Role of
the Counterion. ACS Catal. 2016, 6, 7363−7376.
(17) (a) Ciancaleoni, G.; Belpassi, L.; Zuccaccia, D.; Tarantelli, F.;
Belanzoni, P. Counterion Effect in the Reaction Mechanism of NHC
Gold(I)-Catalyzed Alkoxylation of Alkynes: Computational Insight
into Experiment. ACS Catal. 2015, 5, 803−814. (b) D’Amore, L.;
Ciancaleoni, G.; Belpassi, L.; Tarantelli, F.; Zuccaccia, D.; Belanzoni,
P. Unraveling the Anion/Ligand Interplay in the Reaction Mechanism
of Gold(I)-Catalyzed Alkoxylation of Alkynes. Organometallics 2017,
36, 2364−2376.
(27) (a) Wang, D.; Cai, R.; Sharma, S.; Jirak, J.; Thummanapelli, S.
K.; Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen, J. L.; Shi, X. Silver
Effect” in Gold(I) Catalysis: An Overlooked Important Factor. J. Am.
Chem. Soc. 2012, 134, 9012−9019. (b) Zhdanko, A.; Maier, M. E.
Explanation of “Silver Effects” in Gold(I)-Catalyzed Hydroalkox-
ylation of Alkynes. ACS Catal. 2015, 5, 5994−6004. (c) Homs, A.;
Escofet, I.; Echavarren, A. M. On the Silver Effect and the Formation
of Chloride-Bridged Digold Complexes. Org. Lett. 2013, 15, 5782−
5785.
(28) Lu, Z.; Han, J.; Hammond, G. B.; Xu, B. Revisiting the
Influence of Silver in Cationic Gold Catalysis: A Practical Guide. Org.
Lett. 2015, 17, 4534−4537.
(29) (a) Preisenberger, M.; Schier, A.; Schmidbaur, H. (Phosphine)-
gold(I) trifluoromethanesulfonates, trifluoroacetates and trichloro-
thioacetates. J. Chem. Soc., Dalton Trans. 1999, 0, 1645−1650.
̈
(b) Zhdanko, A.; Strobele, M.; Maier, M. E. Coordination Chemistry
of Gold Catalysts in Solution: A Detailed NMR Study. Chem. - Eur. J.
2012, 18, 14732−14744.
(30) We studied the JohnPhos−Au−Cl/AgOTf system (Table 1,
entry 6) by means of 31P NMR spectra recorded at the end of the
δ 63.9 ppm was observed, indicating that a [JohnPhos−Au−(3-
hexyne)]OTf is prevalently present during the reaction. Ciancaleoni,
G.; Belpassi, L.; Tarantelli, F.; Zuccaccia, D.; Macchioni, A. A
combined NMR/DFT study on the ion pair structure of [(PR1 R2)-
2
Au(η2-3-hexyne)]BF4 complexes. Dalton Trans 2013, 42, 4122−4131.
(31) Makosza, M. Phase-transfer catalysis. A general green
methodology in organic synthesis. Pure Appl. Chem. 2000, 72,
1399−1403.
(18) E-factor = mass of waste/mass of desired product.
(19) Effective mass yield, EMY = (mass of desired product/total
mass of material used) × 100.
(20) Gatto, M.; Baratta, W.; Belanzoni, P.; Belpassi, L.; Del Zotto,
A.; Tarantelli, F.; Zuccaccia, D. Hydration and alkoxylation of alkynes
catalyzed by NHC−Au−OTf. Green Chem. 2018, 20, 2125−2134.
(32) (a) Leyva, A.; Corma, A. Corma, Isolable Gold(I) Complexes
Having One Low-Coordinating Ligand as Catalysts for the Selective
Hydration of Substituted Alkynes at Room Temperature without
Acidic Promoters A. J. Org. Chem. 2009, 74, 2067−2074. (b) Gaillard,
́
S.; Bosson, J.; Ramon, R. S.; Nun, P.; Slawin, A. M. Z.; Nolan, S. P.
F
Organometallics XXXX, XXX, XXX−XXX