420
C. Bauer et al. / Chemical Physics 319 (2005) 409–421
[4] X.-Y. Zhu, J. Phys. Chem. B 108 (2004) 8778.
investigated by ultrafast transient absorption spectros-
copy. Comparison of hot electron cooling times under
the same conditions for adsorbates/metal NPs in size
range of 1.7–9.2 nm reveals a decrease of energy loss rate
with NPs sizes. This behavior is attributed to the incom-
plete internal thermalization observed in these systems,
which slows down the hot electron cooling process. A
chain of complex dynamical events takes place in the
adsorbates/metal nanosystem where adsorbates first
slow down the internal thermalization (e–e scattering)
during the early stages of photonic energy dissipation.
Therefore, the rate of phonons emission is initially very
low during the nonthermal regime due to the small pop-
ulation size of electrons out of equilibrium (NNEs) able
to interact with phonons compared to the thermal regime
[
5] H. Petek, H. Nagano, M.J. Weida, S. Ogawa, J. Phys. Chem. B
05 (2001) 6767.
1
[6] M. Bonn, S. Funk, C. Hess, D.N. Denzler, C. Stampf, M.
Scheffler, M. Wolf, G. Ertl, Science 285 (1999) 1042.
[7] W. Ho, J. Chem. Phys. 117 (2002) 11033.
[8] H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11 (1999) 605.
[
9] D. Cahen, A. Kahn, Adv. Mater. 15 (2003) 271.
10] J.P. Jiang, K. Bosnick, M. Maillard, L. Brus, J. Phys. Chem. B
07 (2003) 9964.
11] C. Joachim, J.K. Gimzwski, A. Aviram, Nature 408 (2000) 541.
[
[
1
[12] A. Nitzan, M.A. Ratner, Science 300 (2003) 1384.
[13] It could be useful to point out that all the following processes are
equivalent and describe the same phenomenon: internal thermali-
sation, electron–electron scattering, build-up of Fermi–Dirac
electron distribution, hot electron thermalization, formation of a
hot electron gas, establishment of an electronic temperature. The
hot electron cooling is also called the external thermalization,
nonequilibrium energy-loss process or electron–phonon interac-
tion process.
(
hot electron gas). These observations suggest that the
retardation of internal thermalization leads to a decrease
of the strength of electron–phonon coupling and that the
dynamics can hardly be described within the frame of the
two-temperature model. Furthermore, our results show
that surface effects (adsorbates) dominate size effects
for the control of dynamical behavior of nonequilibrium
electrons in metal/asorbates nanosystems. The energy
flow between metal and adsorbates is mediated by the
charge resonance process (chemical interface damping).
Finally, the delayed hot electron cooling induced by
the nonthermal distribution highlights the strong effect
of adsorbates on nonequilibrium electrons dynamics in
metal NPs.
[
14] M.I. Kaganov, I.M. Lifshitz, L.V. Tanarov, Sov. Phys. JETP 4
1957) 173.
(
[15] S.I. Animisov, B.L. Kapeliovich, T.L. PerelÕman, Sov. Phys. JETP
39 (1974) 375.
[16] R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51
1995) 11433.
(
[17] M. Lisowski, P. Loukakos, U. Bovensiepen, J. Stahler, C. Gahl,
M. Wolf, Appl. Phys. A 78 (2004) 165.
[18] B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65
(2002).
[19] C. Bauer, J.-P. Abid, D. Fermin, H.H. Girault, J. Chem. Phys. 120
2004) 9302.
(
[20] R.R. Cavanagh, D.S. King, J.C. Stephenson, T.F. Heinz, J. Phys.
Chem. 97 (1993) 786.
[
[
[
[
[
21] J.W. Gadzuk, Chem. Phys. 251 (2000) 87.
22] D. Menzel, R. Gomer, J. Chem. Phys. 41 (1964) 3311.
23] P.A. Redhead, Can. J. Phys. 42 (1964) 886.
24] P.R. Antoniewicz, Phys. Rev. B 21 (1980) 3811.
25] R.J. Deliwala, R.J. Finlay, T.H. Goldmann, T.H. Her, W.D.
Mieher, E. Mazur, Chem. Phys. Lett. 242 (1995) 617.
26] T.-H. Her, R.J. Finlay, C. Wu, E. Mazur, J. Chem. Phys. 108
(1998) 8595.
Acknowledgments
C.B. gratefully acknowledges Pascal Comte and
Raphael Charvet for the preparation of the titanium
dioxide matrix, Val e´ rie Devaud for the technical assis-
tance and J.-E. Moser and B. Wenger for the help with
the femtosecond laser set-up. The authors acknowledge
the Centre Interd e´ partemental de Microscopie (EPFL)
for the TEM pictures. The present work is financed by
the ‘‘Fonds National Suisse de la Recherche Scientifi-
que’’ and the ‘‘Office F e´ d e´ rale de lÕEducation et de la
Science (project C02.0010)’’. The Laboratoire dÕElectro-
chimie Physique et Analytique is part of the TMR
network SUSANA (Supramolecular Self-Assembly of
Interfacial Nanostructures).
[
[
[
27] S. Link, M.A. El-Sayed, J. Phys. Chem. B 103 (1999) 8410.
28] J.H. Hodak, A. Henglein, G.V. Hartland, J. Phys. Chem. B 104
(
2000) 9954.
[
29] C. Voisin, N. Del Fatti, D. Christofilos, F. Vall e´ e, J. Phys. Chem.
B 105 (2001) 2264.
[30] N. Del Fatti, F. Vall e´ e, C. R. Phys. 3 (2002) 365.
[
[
31] G.V. Hartland, Int. J. Nanotechnol. 1 (2004) 307.
32] J.H. Hodak, A. Henglein, G.V. Hartland, J. Chem. Phys. 112
(
2000) 5942.
[33] T.S. Ahmadi, S.L. Logunov, M.A. El-Sayed, J.T. Khouri, R.L.
Whetten, J. Phys. Chem. B 101 (1997) 3713.
[34] S. Link, C. Burda, Z.L. Wang, M.A. El-Sayed, J. Chem. Phys. 111
1999) 1255.
(
[
35] A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, F.
Vall e´ e, J. Lerme, G. Celep, E. Cottancin, M. Gaudry, M. Pellarin,
M. Broyer, M. Maillard, I.M. Pilen, M. Treguer, Phys. Rev. Lett.
References
9
0 (2003) 177401.
[36] S. Link, A. Furube, M.B. Mohamed, T. Asahi, H. Masuhara,
M.A. El-Sayed, J. Phys. Chem. B 106 (2002) 945.
[
[
[
1] A.M. Kuznetsov, Charge Transfer in Physics, Chemistry and
Biology, Gordon and Breach, New-York, 1995.
2] H.H. Girault, Analytical and Physical Electrochemistry, Marcel
Dekker, 2004.
3] R.J.D. Miller, G.L. McLendon, A.J. Nozik, W. Schmickler, F.
Willig, Surface Electron-Transfer Processes, VCH, New-York,
[37] M.B. Mohamed, T.S. Ahmadi, S. Link, M. Braun, M.A. El-
Sayed, Chem. Phys. Lett. 343 (2001) 55.
[38] S. Link, D.J. Hathcock, B. Nikoobakht, M.A. El-Sayed, Adv.
Mater. 15 (2003) 393.
[39] S.L. Westcott, R.D. Averitt, J.A. Wolfgang, P. Nordlander, N.J.
Halas, J. Phys. Chem. B 105 (2001) 9913.
1995.