3
198
B.S. Flavel et al. / Electrochimica Acta 54 (2009) 3191–3198
[16] B.S. Flavel, J. Yu, J.G. Shapter, J.S. Quinton, Electrochim. Acta 53 (2008) 5653.
can be attributed to the use of a bulk gold electrode reducing elec-
tron percolation which is expected to exist for a porous [27,28,41]
electroless plated layer. Despite this, upon performing a complete
electrochemical analysis the attachment of vertically aligned car-
bon nanotubes to nanoscale lateral gold wires, as shown previously
[
17] J. Yu, S. Mathew, B.S. Flavel, M.R. Johnston, J.G. Shapter, J. Am. Chem. Soc. 130
2008) 8788.
(
[18] J. Yu, J.G. Shapter, M.R. Johnston, J.S. Quinton, J.J. Gooding, Electrochim. Acta 52
(2007) 6206.
[
19] P. Diao, Z. Liu, B. Wu, X. Nan, J. Zhang, Z. Wei, Chem. Phys. Phys. Chem. 10 (2002)
98.
8
[
30], looks promising as a future approach to fabricate vertically
[
20] J.J. Gooding, A. Chou, J. Liu, D. Losic, J.G. Shapter, D.B. Hibbert, Electrochem.
Commun. 9 (2007) 1677.
integrated carbon nanotube wires in electronic devices.
[21] J.J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F.J. Mearns, J.G.
Shapter, D.B. Hibbert, J. Am. Chem. Soc. 125 (2003) 9006.
4
. Conclusions
[
22] M.M. Walczak, C.A. Alves, B.D. Lamp, M.D. Porter, J. Eletroanal. Chem. 396 (1995)
03.
[23] M.D. Porter, T.B. Bright, D.L. Allara, C.E.D. Chidsey, J. Am. Chem. Soc. 109 (1987)
559.
24] C.A. Widrig, C. Chung, M.D. Porter, J. Electroanal. Chem. 310 (1991) 335.
1
This work has provided a detailed analysis of the electro-
3
chemical and kinetic parameters of ferrocenemethanol-modified
carbon nanotubes immobilised on an electrolessly deposited gold
layer. The chemical approach used to create the electrodes was
exactly the same as previously used to create nanostructure sys-
tems of carbon nanotubes on gold wires. Cyclic voltammetry of the
chemically modified carbon nanotube working electrodes demon-
strated that the electrochemical signal was from surface bound
redox species. The number of surface bound ferrocenemethanol
[
[25] J. Liu, A. Chou, R. Wibowo, M.N. Paddon-Row, J.J. Gooding, Electroanalysis 17
(2005) 38.
26] H. Menzel, M.D. Mowery, M. Cai, C.E. Evans, Adv. Mater. 11 (1999) 131.
27] Y. Jin, X. Kang, Y. Song, B. Zhang, G. Cheng, S. Dong, Anal. Chem. 73 (2001) 2843.
[
[
[
[
[
28] S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, J.H.T. Luong, Langmuir 19 (2003)
3958.
29] F. Guan, M. Chen, W. Yang, J. Wang, S. Yong, Q. Xue, Appl. Surf. Sci. 240 (2005)
24.
30] B.S. Flavel, J. Yu, A.V. Ellis, J.S. Quinton, J.G. Shapter, Nanotechnology 19 (2008)
445301.
[31] I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero,
A.M. Baro, Rev. Sci. Instrum. 78 (2007) 13705.
13
−2
molecules was calculated to be 9.06 × 10 molecules cm and the
−
1
electron transfer rate determined to be 36.95 ± 2.46 s . This rep-
resents a substantially higher electron transfer rate compared to
other carbon nanotube-based electrodes. Due to the roughness of
the porous gold layer two oxidative cysteamine desorption peaks
where also observed. It is believed that the development of electro-
less techniques to create a more heterogeneous, smooth gold layer
are required to reduce cysteamine monolayer desorption.
[
32] C.D. Keating, M.D. Musick, M.H. Keefe, M.J. Natan, J. Chem. Educ. 76 (1999)
949.
[
[
[
33] B.S. Flavel, J. Yu, J.G. Shapter, J.S. Quinton, Carbon 45 (2007) 2551.
34] B.S. Flavel, J. Yu, J.G. Shapter, J.S. Quinton, Soft Matter 5 (2009) 164.
35] A.N. Shipway, E. Katz, I. Willner, Chem. Phys. Phys. Chem. 1 (2000) 18.
[36] J. Park, H. Lee, Colloids Surf. A 257–258 (2005) 133.
[37] A.N. Shipway, M. Lahav, I. Willner, Adv. Mater. 12 (2000) 993.
38] Q. Li, J. Zheng, Z. Liu, Langmuir 19 (2003) 166.
39] R.M. Petoral, K. Uvdal, Colloids Surf. B 25 (2002) 335.
[40] S.K. Kim, J. Zhang, M. Lee, H.Y. Choi, H. Lee, Curr. Appl. Phys. 6S1 (2006) e48.
41] T.N. Vorobyova, O.N. Vrublevskaya, A.V. Vengura, Surf. Coat. Technol. 200 (2005)
[
[
References
[
[
[
[
[
[
[
[
[
[
1] P.G. Wiles, J. Abrahamson, Carbon 16 (1977) 341.
2] J. Abrahamson, P.G. Wiles, B.L. Rhoades, Carbon 37 (1999) 1873.
3] S. Iijima, Nature 354 (1991) 56.
4] J.J. Gooding, Electrochim. Acta 50 (2005) 3049.
5] J. Wang, Electroanalysis 17 (2005) 7.
2481.
[42] S. Xu, G. Tu, B. Peng, X. Han, Anal. Chim. Acta 570 (2006) 151.
[43] C.M. Pradier, M. Salmain, Z. Liu, C. Methivier, Surf. Interf. Anal. 34 (2002) 67.
[44] J. Yu, J.G. Shapter, J.S. Quinton, M.R. Johnston, D.A. Beattie, Phys. Chem. Chem.
Phys. 9 (2007) 510.
[45] J. Yu, B.S. Flavel, J.G. Shapter, Fullerenes, Nanotubes, Carbon Nanostruct. 16
(2008) 18.
[46] J. Yu, D. Losic, M. Marshall, T. Bocking, J.J. Gooding, J.G. Shapter, Soft Matter 2
(2006) 1081.
[47] J. Liu, M.N. Paddon-Row, J.J. Gooding, J. Phys. Chem. B 108 (2004) 8460.
[48] S.E. Creager, G.K. Rowe, Electroanal. Chem. 420 (1997) 291.
[49] M. Wirde, U. Gelius, Langmuir 15 (1999) 6370.
6] B. Zeng, F. Huang, Talanta 64 (2004) 380.
7] O. Lee, K. Lee, Appl. Phys. Lett. 82 (2003) 3770.
8] Z. Liu, Z. Shen, T. Zhu, S. Hou, L. Ying, ACS J. Surf. Colloids 16 (2000) 3569.
9] X. Nan, Z. Gu, Z. Liu, J. Colloid Interf. Sci. 245 (2002) 311.
[
[
[
10] P. Zhang, F. Wu, G. Zhao, X. Wei, Bioelectrochemistry 67 (2005) 109.
11] M. Guo, J. Chen, L. Nie, S. Yao, Electrochim. Acta 49 (2004) 2637.
12] G.G. Wildgoose, C.E. Banks, H.C. Leventis, R.G. Compton, Microchim. Acta 152
2006) 187.
13] C. Cai, J. Chen, Anal. Biochem. 325 (2004) 285.
14] L. Wang, J. Wang, F. Zhou, Electroanalysis 16 (2004) 627.
15] B.S. Flavel, J. Yu, J.G. Shapter, J.S. Quinton, J. Mater. Chem. 17 (2007) 4757.
(
[50] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applica-
tions, John Wiley & Sons, New York, 2000, Ch. 6.
[51] A. Chou, T. Bocking, N.K. Singh, J.J. Gooding, Chem. Commun. (2005) 842.
[52] B. Ye, S. Qu, F. Wang, L. Li, J. Chin. Chem. Soc. 52 (2005) 1111.
[
[
[