COMMUNICATIONS
4: Conjugate 4 was synthesized on a solid-phase peptide synthesizer.
Standard fmoc-protected amino acids (fmoc 9-fluorenylmethoxycarbon-
yl) were used for the synthesis. Conjugate 4 was purified by HPLC and
Press, Boca Raton, FL, 1994, pp. 125 ± 158; e) J. C. Reubi, J. Nucl.
Med. 1995, 36, 1825 ± 1835; f) W. H. Brakker, R. Albert, C. Bruns, Life
Sci. 1991, 49, 1583 ± 1591.
analyzed with 31P NMR spectroscopy and mass spectrometry (Figure 1). 31
P
[9] a) S. R. Gilbertson, G. Chen, M. Mcloughlin, J. Am. Chem. Soc. 1994,
116, 4481 ± 4482; b) S. R. Gilbertson, X. Wang, G. S. Hoge, C. A. Klug,
J. Schaefer, Organometallics 1996, 15, 4678 ± 4680.
NMR (121 MHz, D2O): d 137.91 (s). 31P NMR (121 MHz, proton
coupled, D2O) d 137.90 (t, JP,H 190.2 Hz). LR-MS (FAB) m/z calcd for
[M H]: 1591.9; found: 1592.0.
[10] a) K. V. Katti, H. Gali, D. E. Berning, C. J. Smith, Acc. Chem. Res.
1999, 32, 9 ± 17; b) D. E. Berning, K. V. Katti, C. L. Barns, W. A.
Volkert, J. Am. Chem. Soc. 1999, 121, 1658 ± 1664; c) C. J. Smith, V. S.
Reddy, K. V. Katti, J. Chem. Soc. Dalton Trans. 1998, 1365 ± 1370;
d) D. E. Berning, K. V. Katti, C. L. Barnes, W. A. Volkert, Chem. Ber.
1997, 130, 907 ± 911; e) D. E. Berning, K. V. Katti, C. L Barnes, W. A.
Volkert, A. R. Ketring, Inorg. Chem. 1997, 36, 2765 ± 2769; f) C. J.
Smith, V. S. Reddy, K. V. Katti, L. J. Barbour, Inorg. Chem. 1997, 36,
1786 ± 1791; g) C. J. Smith, K. V. Katti, W. A. Volkert, L. J. Barbour,
Inorg. Chem. 1997, 36, 3928 ± 3935; h) C. J. Smith, K. V. Katti, C.
Higginbotham, W. A. Volkert, J. Labelled Compd. Radiopharm. 1997,
40(S1), 444 ± 446; i) V. S. Reddy, K. V. Katti, C. L. Barnes, J. Chem.
Soc. Dalton Trans. 1996, 1301 ± 1304; j) C. J. Smith, V. S. Reddy, K. V.
Katti, Chem. Commun. 1996, 2557 ± 2558; k) V. S. Reddy, K. V. Katti,
D. E. Berning, W. A. Volkert, A. R. Ketring, C. L. Barnes, Inorg.
Chem. 1996, 35, 1753 ± 1757; l) V. S. Reddy, K. V. Katti, W. A. Volkert,
J. Chem. Soc. Dalton Trans. 1996, 4459 ± 4462; m) K. V. Katti, Curr.
Sci. 1995, 70, 219 ± 225; n) K. V. Katti, V. S. Reddy, P. R. Singh, Chem.
Soc. Rev. 1995, 24, 97 ± 107; o) V. S. Reddy, K. V. Katti, C. L. Barnes,
Inorg. Chim. Acta 1995, 240, 367 ± 370.
[11] a) J. L. Cabioch, J. M. Denis, J. Organomet. Chem. 1989, 377, 227 ± 233;
b) E. C. Ashby, J. Prather, J. Am. Chem. Soc. 1966, 88, 729.
[12] a) M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart,
Quantum Chemistry Programme, Exchange Package No. 455, 1985;
b) H. Gali, K. V. Katti, unpublished results.
[13] D. E. C. Corbridge, Phosphorus-An Outline of its Chemistry, Bio-
chemistry and Technology, Elsevier, New York, 1990.
[14] A. F. Wagner, E. Walton, G. E. Boxer, M. P. Pruss, F. W. Holly, K.
Folkers, J. Am. Chem. Soc. 1956, 78, 5079 ± 5081.
5: To a solution of 4 (0.5 mg) in ethanol (400 mL) and DMF (100 mL) were
added 0.1n HCl (25 mL) and 37% aqueous formaldehyde (25 mL), and the
reaction mixture was stirred at room temperature (258C) for 5 min. The
formation of P2S2-d-Lys6-LHRH hydroxymethylphosphonium chloride was
confirmed by the 31P NMR signal at d 31.39(s). The P2S2-d-Lys6-LHRH
hydroxymethylphosphonium chloride was converted into 5 by the addition
of 1m aqueous sodium bicarbonate (30 mL) in near quantitative yields as
demonstrated by the 31P NMR chemical shift at d 24.23.
Received: December 9, 1998
Revised version: February 9, 1999 [Z12764IE]
German version: Angew. Chem. 1999, 111, 2152 ± 2155
Keywords: bioorganic chemistry
´ peptide conjugates ´
phosphanes
[1] K. Severin, R. Bergs, W. Beck, Angew. Chem. 1998, 110, 1722 ± 1743;
Angew. Chem. Int. Ed. 1998, 37, 1634 ± 1654.
[2] a) B. K. Keppler, C. Friesen, H. Vongerichten, E. Vogel in Metal
Complexes in Cancer Chemotherapy (Ed.: B. K. Keppler), VCH,
Weinheim, 1993, pp. 297 ± 323; b) P. Köpf-Maier, H. Köpf in Metal
Compounds in Cancer Therapy (Ed.: S. P. Fricker), Chapman & Hall,
London, 1994, pp. 109 ± 146; c) C. Christodoulou, D. Ferry, D. Fyfe, A.
Young, J. Doran, G. Sass, A. Eliopoulos, T. Sheehan, D. J. Kerr, Proc.
88th Annu. Meeting Am. Assoc. Cancer Res. 1997, 38, 222; d) S. G.
Ward, R. C. Taylor in Metal-based Antitumor Drugs (Ed.: M. F.
Gielen), Freund, London, 1988, pp. 1 ± 54.
[3] a) P. E. Garrou, Chem. Rev. 1985, 85, 171 ± 185; b) Transition-Metal
Complexes of Phosphorus, Arsenic, and Antimony Ligands (Ed.: C. A.
McAuliffe), Wiley, New York, 1973; c) C. A. McAuliffe, W. Levason,
Phosphane, Arsenine, and Stibine Complexes of Transition Elements,
Elsevier, New York, 1979; d) W. Levason, C. A. McAuliffe, Acc.
Chem. Res. 1978, 11, 363 ± 368.
[4] a) K. Drauz, A. Kleeman, J. Martens, Angew. Chem. 1982, 94, 590 ±
613; Angew. Chem. Int. Ed. Engl. 1982, 21, 584 ± 608; b) A. Mori, H.
Abe, S. Inoue, Appl. Organomet. Chem. 1995, 9, 189 ± 197; c) P.
Kvintovics, B. R. James, B. Hail, J. Chem. Soc. Chem. Commun. 1986,
1810 ± 1811; d) H. Brunner, B. Reiter, G. Riepl, Chem. Ber. 1984, 117,
1130 ± 1354.
Modeling a Nitrogenase Key Reaction:
The N2-Dependent HD Formation by D2/H
Exchange**
Dieter Sellmann* and Anja Fürsattel
Dedicated to Professor Helmut Werner
on the occasion of his 65th birthday
[5] a) B. L. Iverson, S. A. Iverson, V. A. Roberts, E. D. Getzoff, J. A.
Tainer, S. J. Benkovic, R. A. Lerner, Science 1990, 249, 659 ± 662;
b) L. A. Regan, Rev. Biophys. Biomol. Struct. 1993, 22, 257 ± 281;
c) J. T. Kellis Jr., F. H. Arnold, BioTechnology 1991, 9, 994 ± 995.
Biological N2 fixation is one of the fundamental natural
synthetic processes and is catalyzed by FeMo, FeV, or FeFe
nitrogenases.[1] X-ray structure analyses have revealed the
molecular structure of FeMo nitrogenase and its active
centers, in particular the structure of the FeMo cofactors
(FeMoco).[2] However, the intimate molecular mechanism of
biological N2 reduction and the concomitant ªobligatory
dihydrogen evolutionº (OHE) has remained a mystery. The
OHE is an integral part of enzymatic N2 reduction and cannot
Â
Â
 Â
[6] a) T. Janaky, A. Juhasz, Z. Rekasi, P. Serfözö, J. Pinski, L. Bokser, G.
Srkalovic, S. Milovanovic, T. W. Redding, G. Halmos, A. Nagy, A. V.
Schally, Proc. Natl. Acad. Sci. USA 1992, 89, 972 ± 976; b) J. Pinski,
A. V. Schally, T. Yano, K. Szepeshazi, G. Halmos, K. Groot, A. M.
Comaru-Schally, S. Randulovic, A. Nagy, Prostate (NY) 1993, 23,
165 ± 178.
[7] M. A. DeRosch, J. W. Brodack, G. D. Grummon, M. E. Marmion,
D. L. Nosco, K. F. Deutsch, E. Deutsch, J. Nucl. Med. 1992, 33, 850;
b) A. M. Forster, A. E. Storey, K. R. Nagel, F. S. Brooker, B. Edwards,
H. K. Gill, J. D. Kelly, M. McPartlin, J. Nucl. Med. 1992, 33, 850.
[8] For recent reviews and papers in radiolabeled biomolecules see:
a) S. R. Karra, R. Schibli, H. Gali, K. V. Katti, T. J. Hoffman, C.
Higginbotham, G. L. Sieckman, W. A. Volkert, Bioconjugate Chem.
1999, 10, 254 ± 260; b) W. C. Eckelman, R. E. Gibson, Nuclear Imaging
in Drug Discovery, Development and Approval (Eds.: H. D. Burns,
R. F. Gibson, R. F. Dannals, P. K. S. E. Siegl), Birkhäuser, Basel, 1993,
pp. 113 ± 134; c) A. J. Fischman, J. W. Babich, J. W. Strauss, J. Nucl.
Med. 1993, 34, 2253 ± 2263; d) A. R. Fritzberg, L. M. Gustavson, M. D.
Hylarides, J. M. Reno, Chemical and Structural Approaches to
Rational Drug Design (Eds.: D. B. Weiner, W. V. Williams), CRC
[*] Prof. Dr. D. Sellmann, Dipl.-Chem. A. Fürsattel
Institut für Anorganische Chemie der Universität Erlangen-Nürnberg
Egerlandstrasse 1, D-91058 Erlangen (Germany)
Fax: (49)9131-852-7367
[**] Transition Metal Complexes with Sulfur Ligands. Part 137. This work
was supported by the Deutsche Forschungsgemeinschaft and the
Fonds der Chemischen Industrie. Part 136: D. Sellmann, J. Utz, F. W.
Heinemann, Inorg. Chem. submitted.
Angew. Chem. Int. Ed. 1999, 38, No. 13/14
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3813-2023 $ 17.50+.50/0
2023