Beilstein J. Org. Chem. 2019, 15, 795–800.
12.Vorogushin, A. V.; Wulff, W. D.; Hansen, H.-J. J. Am. Chem. Soc.
13.Guo, F.; Konkol, L. C.; Thomson, R. J. J. Am. Chem. Soc. 2011, 133,
much faster than their respectively cyclizations to give V and
V′. Since TS2 is relatively lower in energy than TS3, V is
formed as the major product.
14.Qiu, L.; Kwong, F. Y.; Wu, J.; Lam, W. H.; Chan, S.; Yu, W.-Y.;
Li, Y.-M.; Guo, R.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2006,
Conclusion
In summary, we have developed a diastereoselective approach
for the synthesis of axially chiral biaryls through an electricity-
powered cyclization cascade. The reactions employ easily
assembled starting materials and afford functionalized imidazo-
pyridine-based biaryls in good to high yields and diastereoselec-
tivity.
15.Kärkäs, M. D. Chem. Soc. Rev. 2018, 47, 5786–5865.
16.Zhao, Y.; Xia, W. Chem. Soc. Rev. 2018, 47, 2591–2608.
17.Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016,
18.Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603–1618.
Supporting Information
19.Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069–3087.
Supporting Information File 1
Experimental part.
20.Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117,
21.Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.;
Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 5594–5619.
22.Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.;
Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 6018–6041.
Acknowledgements
23.Feng, R.; Smith, J. A.; Moeller, K. D. Acc. Chem. Res. 2017, 50,
24.Moeller, K. D. Chem. Rev. 2018, 118, 4817–4833.
Financial support of this research from MOST
(2016YFA0204100), NSFC (21672178), and the Fundamental
Research Funds for the Central Universities, is acknowledged.
25.Yan, M.; Kawamata, Y.; Baran, P. S. Angew. Chem., Int. Ed. 2018, 57,
ORCID® iDs
26.Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338–352.
27.Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27–45.
References
28.Yoshida, J.-i.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev.
29.Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485–4540.
1. Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev.
3. Tanaka, K. Chem. – Asian J. 2009, 4, 508–518.
30.Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492–2521.
4. Wallace, T. W. Org. Biomol. Chem. 2006, 4, 3197–3210.
31.Hou, Z.-W.; Mao, Z.-Y.; Melcamu, Y. Y.; Lu, X.; Xu, H.-C.
Angew. Chem., Int. Ed. 2018, 57, 1636–1639.
5. Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.;
Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384–5427.
32.Hou, Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Chin. J. Chem. 2018, 36,
6. Ma, G.; Sibi, M. P. Chem. – Eur. J. 2015, 21, 11644–11657.
33.Hou, Z.-W.; Mao, Z.-Y.; Song, J.; Xu, H.-C. ACS Catal. 2017, 7,
7. Link, A.; Sparr, C. Chem. Soc. Rev. 2018, 47, 3804–3815.
34.Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y. Y.; Lu, X.; Song, J.;
Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168–9172.
8. Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534–547.
35.Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R.
J. Am. Chem. Soc. 2017, 139, 12317–12324.
9. Yang, H.; Yang, X.; Tang, W. Tetrahedron 2016, 72, 6143–6174.
10.Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F.
11.Raut, V. S.; Jean, M.; Vanthuyne, N.; Roussel, C.; Constantieux, T.;
Bressy, C.; Bugaut, X.; Bonne, D.; Rodriguez, J. J. Am. Chem. Soc.
36.Xu, H.-C.; Moeller, K. D. J. Am. Chem. Soc. 2008, 130, 13542–13543.
37.Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Angew. Chem., Int. Ed.
38.Kehl, A.; Breising, V. M.; Schollmeyer, D.; Waldvogel, S. R.
799