S. J. Peters, M. E. Kassabaum, M. K. Nocella, R. McDonald
FULL PAPER
[10] a) Z. Bukac, J. Sebenda, Chem. Prum. 1985, 35, 361–363; b) J.
Horsky, U. Kubanek, J. Marick, J. Kralicek, Chem. Prum.
1982, 32, 599–603.
[11] a) I. Kogon, J. Am. Chem. Soc. 1956, 78, 4911–4914; b) R.
Richter, H. Ulrich, Synthesis 1975, 7, 463–464; c) A. Giuglio-
Tonolo, C. Spitz, T. Terme, P. Vanelle, Tetrahedron Lett. 2014,
55, 2700–2702.
[12] F. Tanimoto, T. Tanka, H. Kitano, K. Fukui, Bull. Chem. Soc.
Jpn. 1966, 39, 1922–1925.
[13] Y. Nambu, T. Endo, J. Org. Chem. 1993, 58, 1932–1934.
[14] a) J. Tang, T. Mohan, J. Verkade, J. Org. Chem. 1994, 59, 4931–
4938; b) S. Raders, J. Verkade, J. Org. Chem. 2010, 75, 5308–
5311.
the following pairs of distances were constrained to be equal
(within 0.03 Å) during the refinement: d(N1–C1) = d(N1–C2),
d(N2–C2) = d(N2–C3). The naphthyl group containing carbon
atoms C20 through C29 was refined with an idealized geometry,
with all C–C bond lengths fixed at 1.390 Å and all bond angles
within this group fixed at 120.0°. See Table 1 for a summary of
crystallographic data. CCDC-1408225 (for syn-2·2CH2Cl2) and
-1408226 (for anti-2·2CH2Cl2) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[15] M. Khajavi, M. Dakamin, H. Hazarkhani, J. Chem. Res. 2000,
145–147.
Table 1. Summary of crystallographic data.
[16] S. Foley, G. Yap, D. Richeson, Organometallics 1999, 18, 4700–
4705.
syn-2·2CH2Cl2
anti-2·2CH2Cl2
[17] J. Villa, H. Powell, Synth. React. Inorg. Met.-Org. Chem. 1976,
Empirical formula C33H21N3O3·2CH2Cl2 C33H21N3O3·2CH2Cl2
6, 59–63.
M [gmol–1]
Space group
a [Å]
b [Å]
c [Å]
677.38
677.38
[18] H. Duong, M. Cross, J. Louie, Org. Lett. 2004, 6, 4679–4681.
[19] S. Peters, J. Klen, N. Smart, Org. Lett. 2008, 10, 4521–4524.
[20] M. Servos, N. Smart, M. Kassabaum, C. Scholtens, S. Peters,
J. Org. Chem. 2013, 78, 3908–3917.
[21] S. Peters, J. Klen, J. Org. Chem. 2015, 80, 5851–5858.
[22] L. Lunazzi, M. Mancinelli, A. Mazzanti, J. Org. Chem. 2012,
77, 3373–3380.
C2/c (no. 15)
20.8470(9)
14.1127(6)
21.6173(10)
102.9425(5)
6198.4(5)
8
C2/c (no. 15)
22.5158(19)
16.9754(15)
8.6721(7)
106.6746(10)
3175.2
4
–100
Mo-Kα (0.71073)
1.417
0.414
β [°]
V [Å3]
[23] The 13C NMR chemical shift at δ ≈ 149 ppm for the carbonyl
groups is typical for all substituted isocyanurates: a) D. Duff,
G. Maciel, Macromolecules 1990, 23, 3069–3079; b) ref.[22]
[24] a) V. Thalladi, K. Panneerselvam, C. Carrell, H. Carrell, G.
Desiraju, J. Chem. Soc., Chem. Commun. 1995, 341–342; b) S.
Chong, C. Seaton, B. Kariuki, M. Tremayne, Acta Crystallogr.,
Sect. B 2006, 62, 864–874; c) X. Zhou, L. Zhang, M. Zhu,
R. Cai, L. Weng, Organometallics 2001, 20, 5700–5706; d) V.
Thalladi, A. Katz, H. Carrell, A. Nangia, G. Desiraju, Acta
Crystallogr., Sect. C 1998, 54, 86–89; e) P. Tallapally, G. Desi-
raju, Acta Crystallogr., Sect. C 2000, 56, 572–573.
[25] The only other example of detecting isocyanate anion radicals
spectroscopically under room-temperature conditions was our
work with phenyl isocyanate systems, see ref.[20]
[26] J. E. Wertz, J. R. Bolton in Electron Spin Resonance – Elemen-
tary Theory and Practical Applications, Chapman and Hall,
London, 1986, pp. 97–98.
[27] For examples of ion association effects with anion radicals in
THF, see: a) P. Ayscough, R. Wilson, Proc. Chem. Soc. 1962,
229–230; b) G. Canters, E. De Boer, Mol. Phys. 1973, 26, 1185–
1198; c) S. Peters, M. Turk, M. Kiesewetter, R. Reiter, C. Ste-
venson, J. Am. Chem. Soc. 2003, 125, 11212–11213.
[28] The fact that well-resolved NMR spectroscopic data (e.g., line-
widths) could be collected with paramagnetic 1·– in solution
must indicate that the concentration of 1·– is small relative to
that of 1 and 2. For a discussion of how paramagnetic species
influence NMR relaxation effects and linewidths, see: J. San-
ders, B. Hunter in Modern NMR Spectroscopy, A Guide for
Chemists, 2nd ed., Oxford University Press, Oxford, 1993, pp.
163–164.
Z
T [°C]
–100
Mo-Kα (0.71073)
1.452
0.424
0.0583
Radiation (λ [Å])
ρcalcd. [gcm–3]
μ [mm–1]
R1 [I Ն 2σ(I)][a]
wR2 (all data)[a]
0.0684
0.2078
0.1872
[a] R1 = Σ||Fo| – |Fc||/Σ|Fo|; wR2 = {Σ[w(Fo – Fc ) ]/Σ[w(Fo4)]}1/2
.
2
2 2
Acknowledgments
Acknowledgment is made to the donors of the American Chemical
Society Petroleum Research Fund for support of this research
(ACS-PRF 51677-UR4). We also wish to thank Professor Lisa F.
Szczepura from the Illinois State University for her assistance with
analyzing the X-ray crystallographic results.
[1] B. Raffel, C. Loevenich, J. Cell. Plast. 2006, 42, 17–47.
[2] C. Loevenich, B. Raffel, J. Cell. Plast. 2006, 42, 289–305.
[3] A. Zitinkina, N. Sibanova, O. Tarakonov, Russ. Chem. Rev.
1985, 54, 1866–1898.
[4] L. Nicholas, G. Gmitter, J. Cell. Plast. 1965, 1, 85–90.
[5] T. Nawata, J. Kresta, K. Frisch, J. Cell. Plast. 1975, 11, 267–
278.
[6] Z. Wirpsza in Polyurethanes: Chemistry, Technology and Appli-
cation, Ellis Horwood Ltd., New York, 1993.
[7] O. Olkhovyk, M. Jaroniec, J. Am. Chem. Soc. 2005, 127, 60–
61.
[29] Area-Detector Absorption Correction, Siemens Industrial Auto-
mation, Inc., Madison, Wisconsin, USA, 1996.
[8] A. Murray, M. Miller, J. Org. Chem. 2003, 68, 191–194.
[9] H. Sugimoto, Y. Yamane, S. Inoue, Tetrahedron: Asymmetry
2000, 11, 2067–2075.
[30] T. Schneider, G. Sheldrick, Acta Crystallogr., Sect. D 2002, 58,
1772–1779.
[31] G. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3–8.
Received: June 30, 2015
Published Online: August 11, 2015
6046
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 6040–6046