photo-oxidation reaction, similar to the findings in the
literature.31
References
1 M. Prein and W. Adam, Angew. Chem., Int. Ed. Engl., 1996, 35, 477.
2 E. L. Clennana and A. Pace, Tetrahedron, 2005, 61, 6665.
3 A. Albini and M. Fagnoni, Green Chem., 2004, 6, 1.
4 M. C. DeRosa and R. J. Crutchley, Coord. Chem. Rev., 2002, 233–
234, 351.
5 T. Hino, T. Anzai and N. Kuramoto, Tetrahedron Lett., 2006, 47,
1429.
6 A. G. Griesbeck, T. T. El-Idreesy and A. Bartoschek, Adv. Synth.
Catal., 2004, 346, 245.
7 N. Kitamura, K. Yamada, K. Ueno and S. Iwata, J. Photochem.
Photobiol., A, 2006, 184, 170.
8 S. M. Ribeiro, A. C. Serra and A. M. d’A. Rocha Gonsalves,
Tetrahedron, 2007, 63, 7885.
9 S. A. Chavan, W. Maes, L. E. M. Gevers, J. Wahlen,
I. F. J. Vankelecom, P. A. Jacobs, W. Dehaen and D. E. De Vos,
Chem.–Eur. J., 2005, 11, 6754.
10 H. L. Xie, Y. X. Fan, C. H. Zhou, Z. X. Du, E. Z. Min, Z. H. Ge and
X. N. Li, Chem. Biochem. Eng. Q., 2008, 22, 25.
11 S. Takagi, M. Eguchi, D. A. Tryk and H. Inoue, J. Photochem.
Photobiol., C, 2006, 7, 104.
2.3. Stability and reusability of supported PPIX. The solid
supported photosensitizers offer several advantages in catalytic
reactions in comparison with the use of the free agents, including
easy handling, simple recovery, and reusability for continuous
processes. In this study, PE-co-MAA-PPIX3, after one catalytic
reaction, was washed extensively and dried in a vacuum,
followed by immersing into another freshly prepared 1,5-dihy-
droxynaphthalene for repeated catalytic reactions. Table 4 shows
that the yields of the oxidized product slightly decreased while
the reaction time gradually increased to complete the reaction
as the repetition of experiments continued, similar but better
than the results of the silica bead supported porphyrins.31 The
probable reason for the inactivation of the supported PPIX is the
degradation of the macrocyclic rings during the photo-oxidation
reaction, as reported.32 However, up to 5 repeated catalytic
reactions were tested; the PE-co-MAA nanofibrous membrane
supported photosensitizer still provided 80% catalytic efficiency,
proving it is durable and reusable for photo-oxidation reactions.
ꢀ
12 P. Rezanka, K. Zaruba and V. Kral, Tetrahedron Lett., 2008, 49,
ꢀ
6448.
13 T. Yui, Y. Kobayashi, Y. Yamada, K. Yano, Y. Fukushima,
T. Torimoto and K. Takagi, ACS Appl. Mater. Interfaces, 2011, 3,
931.
14 S. Y. Tao, G. T. Li and J. X. Yin, J. Mater. Chem., 2007, 17, 2730.
15 Y. F. Yang, H. M. Wang, K. Su, Y. Y. Long, Z. Peng, N. Li and
F. Liu, J. Mater. Chem., 2011, 21, 11895.
Conclusion
16 L. S. Wan, J. Wu and Z. K. Xu, Macromol. Rapid Commun., 2006, 27,
1533.
17 D. Wang, G. Sun and B. S. Chiou, Macromol. Mater. Eng., 2007, 292,
407.
18 J. Zhu, J. Yang and G. Sun, J. Membr. Sci., 2011, 385–386, 269.
19 J. Zhu and G. Sun, AATCC Rev., 2011, 11, 62.
20 S. M. Ribeiro, A. C. Serra and A. M. d’A. Rocha Gonsalves, Appl.
Catal., A, 2011, 399, 126.
21 B. Xiang, K. S. Lam and G. Sun, React. Funct. Polym., 2009, 69, 905.
22 B. Xiang, G. Sun, K. S. Lam and K. Xiao, J. Biomed. Mater. Res.,
Part A, 2010, 95, 245.
23 K. Goren, T. Kehat and M. Portnoy, Adv. Synth. Catal., 2009, 351,
59.
24 S. Liu and G. Sun, J. Appl. Polym. Sci., 2008, 108, 3480.
25 S. Choi, T. G. Spiro, K. C. Langry and K. M. Smith, J. Am. Chem.
Soc., 1982, 104, 4337.
By using melt extrusion, dispersion and depositing processes, PE-
co-MAA nanofibrous membranes with uniform nanofibers and
open porous structure were prepared. Activated with PCl5, the
membranes were incorporated with diamine spacers with vari-
able lengths to provide free amino groups for covalent linking
with protoporphyrin IX (PPIX), a model photosensitizer. The
catalytic performance of PE-co-MAA nanofibrous membrane
supported PPIX was evaluated based on photo-oxidation reac-
tions of 1,5-dihydroxynaphthalene. The length of spacer chains
affected the loading capacity of PPIX on membrane surfaces and
the catalytic activity of the supported PPIX. The supported PPIX
still possessed 80% catalytic efficiency after 5 repeated experi-
ments. These results indicated that the nanofibrous membrane
supported photosensitizer exhibited high catalytic activity, easy
handling, good durability and reusability.
26 X. Ling and J. Zhang, Small, 2010, 6, 2020.
27 G. S. Cox and D. G. Whitten, J. Am. Chem. Soc., 1982, 104, 516.
€
28 M. Oelgemoller, C. Jung, J. Ortner, J. Mattay and E. Zimmermann,
Green Chem., 2005, 7, 35–38.
29 J. R. Hurst, J. D. McDonald and G. B. Schuster, J. Am. Chem. Soc.,
1982, 104, 2065.
30 J. T. Luo, C. Pardin, W. D. Lubell and X. X. Zhu, Chem. Commun.,
2007, 2136.
31 J. H. Cai, J. W. Huang, P. Zhao, Y. J. Ye, H. C. Yu and L. N. Ji, J.
Photochem. Photobiol., A, 2009, 207, 236.
32 J. Wahlen, D. E. De Vos, P. A. Jacobs and P. L. Alsters, Adv. Synth.
Catal., 2004, 346, 152.
Acknowledgements
This research was financially supported by Defense Threat
Reduction Agency (HDTRA1-08-1-0005). J. Zhu is grateful to
Jastro-Shields Graduate Student Research Fellowship Award at
the University of California, Davis.
10588 | J. Mater. Chem., 2012, 22, 10581–10588
This journal is ª The Royal Society of Chemistry 2012