1
760
A. Karkovi ´c et al. / Tetrahedron Letters 52 (2011) 1757–1761
tetramethylpiperidin-1-oxyl (TEMPO) radical in water, possibly
suggesting that ascorbate also uses tunnelling in the PCET pro-
cesses in biological systems. The present results support the infer-
ence in so far as the mixed solvents used in this Letter could be
more similar to a biological environment than ‘pure’ water alone.
37. Jakobuši c´ Brala, C.; Pilepi c´ , V.; Sajenko, I.; Karkovi c´ , A.; Urši c´ , S. submitted to J.
Phys. Chem. A..
38. Kinetic and spectroscopic evidence and all other relevant details are given in
the Supplementary data.
39. Stern, M. J.; Weston, R. E. J. J. Chem. Phys. 1974, 60, 2808–2814.
4
4
4
0. Kohen, A. Prog. React. Kinet. Mech. 2003, 28, 119–156.
1. Romesberg, F. E.; Schowen, R. L. Adv. Phys. Org. Chem. 2004, 39, 27–77.
2. Bielski, B. H. J.; Allen, O.; Schwarz, H. A. J. Am. Chem. Soc. 1981, 103, 3516–3518.
and references cited therein.
Acknowledgement
4
3. Acetone absorbs strongly in the range we used to determine the ascorbate
concentration, which prevents application of the method described (see in
We thank the Croatian Ministry of Science and Technology for
support (Contract 006-0063082-0354).
38
Supplementary data ) for the precise determination of ascorbate. The rate
constants and KIEs were therefore based on the stoichiometric concentration
of ascorbate in the water-acetone solvent used.
4
4. Uncorrected values. The values corrected for the light water content in the
Supplementary data
38
reaction solution are 3–5% greater (see in Supplementary data ).
4
4
4
4
5. Decornez, H.; Hammes-Schiffer, S. J. Phys. Chem. A 2000, 104, 9370–9384.
6. Kresge, A. J. Pure Appl. Chem. 1965, 8, 243–258.
7. Schowen, R. L. Prog. Phys. Org. Chem. 1972, 9, 275–332.
8. Kresge, A. J.; O’Ferrall, R. A.; Powell, M. F. In Isotopes in Organic Chemistry;
Buncel, E., Lee, L. L., Eds.; Elsevier: New York, 1987; Vol. 7,. Chapter 4.
Supplementary data (experimental data: Kinetics and UV spec-
49. All the points in the dependence of kobs versus xD2O related to the H
2
O–D
mixtures deviate from the linear plot significantly. The deviations from
linearity are always for 3–6 values of (standard deviation of the mean values
2
O
38
References and notes
r
of the rate constants measured) in excess. At present, there is a lack of an
appropriate model to assess fractionation factors in this case.
1
2
3
.
.
.
Bell, R. P. The Tunnel Effect in Chemistry; Chapman & Hall: London, 1980.
Kohen, A.; Klinman, J. P. Acc. Chem. Res. 1998, 31, 397–404.
Kohen, A. In Isotope Effects in Chemistry and Biology; Kohen, A., Limbach, H. H.,
Eds.; Taylor & Francis, CRC Press: New York, 2006; pp 744–764.
Kohen, A. In Hydrogen-Transfer Reactions; Hynes, J. T., Klinman, J. P., Limbach,
H.-H., Schowen, R. L., Eds.; Wiley-VCH: Weinheim, 2007; Vol. 4, pp 1311–1339.
Sen, A.; Kohen, A. In Quantum Effects in Enzyme Kinetics; Scrutton, N. S.,
Allemann, R. K., Eds.; Royal Society of Chemistry, 2009; pp 165–181.
Klinman, J. P. Biochim. Biophys. Acta 2006, 1757, 981–987.
50. The rate constant for the reaction is changed (for the reasons we have
+
discussed elsewhere on the addition of the cation/salt, Na (NaCl) in this
instance, in water–acetonitrile (see Table 1). However, the observed rate
constant remained the same when Na-acetate (instead of NaCl) was present in
the reaction solution.
4
5
.
.
51. Carra, C.; Iordanova, N.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2003, 125,
10429–10436.
52. Sjödin, M.; Irebo, T.; Utas, J. E.; Lind, J.; Merényi, G.; Åkermark, B.;
Hammarström, L. J. Am. Chem. Soc. 2006, 128, 13076–13083.
6
7
.
.
Meyer, M. P.; Tomchick, D. R.; Klinman, J. P. Proc. Natl. Acad. Sci. U.S.A. 2008, 105,
1
146–1151.
53. The following reasons support the proposal: (i) Any involvement of acetate as a
proton acceptor in the PCET process must lead to a change of the observed rate
constants in the reaction. The observed rate constants are, however, exactly the
same in the presence of 0.3 M acetate and in the absence of acetate ions. (ii) It
would be highly unexpected that acetate (being an anion, yet is 6.5 pKa units
more basic than water) does not compete with the water for transferring the
proton in the reaction if the proton transfers to the bulk water. (iii) The
observed proton inventory indicates the water molecule should be part of the
activated complex in the reaction. (iv) The water molecule acting as a proton
acceptor may therefore be found between the redox partners. This
8
9
1
.
.
Klinman, J. P. Chem. Phys. Lett. 2009, 471, 179–193.
Nagel, Z. D.; Klinman, J. P. Nat. Chem. Biol. 2009, 5, 543–550.
0. Sutcliffe, M. J.; Masgrau, L.; Roujenikova, A.; Johannissen, L. O.; Hothi, P.;
Basran, J.; Ranaghan, K. E.; Mulholland, A. J.; Leys, D.; Scrutton, N. S. Philos.
Trans. R. Soc. London, Ser. B 2006, 361, 1375–1386.
1
1
1
1
1
1. Johannissen, L. O.; Hay, S.; Scrutton, N. S.; Sutcliffe, M. J. J. Phys. Chem. B 2007,
1
11, 2631–2638.
2. Hay, S.; Sutcliffe, M. J.; Scrutton, N. S. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 507–
12.
3. Pang, J.; Hay, S.; Scrutton, N. S.; Sutcliffe, M. J. J. Am. Chem. Soc. 2008, 130, 7092–
097.
5
configuration can be appropriate for the unidirectional PCET. The advantage
of the unidirectional2
1,51,52
PCET arises from a lowering of the activation barrier
7
4. Pudney, C. R.; Johannissen, L. O.; Sutcliffe, M. J.; Hay, S.; Scrutton, N. S. J. Am.
Chem. Soc. 2010, 132, 11329–11335.
5. Hay, S.; Johannissen, L. O.; Sutcliffe, M. J.; Scrutton, N. S. Biophys. J. 2010, 98,
due to smaller reorganizational energy k, as compared with a bidirectional
PCET;2
1
,
5
1
,
5
2
the activated complex could resemble a solvent-shared ion pair
5
4
(taking into regard repulsion between negatively charged redox partners). The
ascorbate 2-OH is necessary oriented towards the hexacyanoferrate ion as any
other orientation would lead to an unfavourable bidirectional PCET. (v) A
consequence of the (potential) involvement of acetate ions between the redox
partners (instead of the water molecule) would be greater separation between
the redox partners which should diminish the (electronic) couplings between
them, and thus decrease the rate of the PCET reaction, since the rate of PCET
reactions depend strongly on the couplings. These points could explain why
acetate does not compete with water for the ascorbate 2-OH proton in the
PCET process.
1
21–128.
1
1
6. Hammes-Schiffer, S. Acc. Chem. Res. 2006, 39, 93–100.
7. Wu, A.; Mader, E. A.; Datta, A.; Hrovat, D. A.; Borden, W. T.; Mayer, J. M. J. Am.
Chem. Soc. 2009, 131, 11985–11987.
1
8. (a) Huynh, M. H. H.; Meyer, T. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 13138–
1
3
3141; (b) Huynh, M. H. H.; White, P. S.; Meyer, T. J. Angew. Chem., Int. Ed. 2000,
9, 4101–4104.
1
9. Schreiner, P. R.; Reisenauer, H. P.; Pickard, F. C.; Simmonett, A. C.; Allen, W. D.;
Matyus, E.; Csaszar, A. G. Nature 2008, 453, 906–909.
2
2
2
2
0. Cukier, R. I.; Nocera, D. G. Annu. Rev. Phys. Chem. 1998, 49, 337–369.
1. Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363–390.
2. Huynh, M. H. H.; Meyer, T. J. Chem. Rev. 2007, 107, 5004–5064.
3. Hammarström, L.; Styring, S. Philos. Trans. R. Soc. London, Ser. B 2008, 363,
54. Conway, B. E. Ionic Hydration in Chemistry and Biophysics; Elsevier Scientific
Publishing: Amsterdam, 1981.
55. Knapp et al.56 adapted the model presented by Kuznetsov and Ulstrup57 giving
the expression:
1
283–1291.
2
2
4. Reece, S. Y.; Nocera, D. G. Annu. Rev. Biochem. 2009, 78, 673–699.
5. Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.; Patrocinio, A. O.
T.; Iha, N. Y. M.; Templeton, J. T.; Meyer, T. J. Acc. Chem. Res. 2009, 42, 1954–
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
X
1
2
ꢃ
2
2
ꢁðD
G
þE ibþkÞ =ð4kRTÞ
3
v
k
tunn
¼
P
t
jVel
j
4p =kRT ꢀh exp
2
p
t
w
1
965.
2
2
6. Hammes-Schiffer, S. Acc. Chem. Res. 2009, 42, 1881–1889.
ꢄ ðF:C:termÞt;w
7. Magnuson, A.; Anderlund, M.; Johansson, O.; Lindblad, P.; Lomoth, R.; Polivka,
T.; Ott, S.; Stensjö, K.; Styring, S.; Sundström, V.; Hammarström, L. Acc. Chem.
Res. 2009, 42, 1899–1909.
8. Gagliardi, C. J.; Westlake, B. C.; Kent, C. A.; Paul, J. J.; Papanikolas, J. M.; Meyer,
T. J. Coord. Chem. Rev. 2010, 254, 2459–2471.
where ktunn is the rate constant related to tunnelling. The first term
describes electronic coupling and is isotope-independent; the second is
2
an environmental energy term relating the reorganizational energy, k,
O
and the driving force of the reaction,
D
r
G . Evib is the vibrational energy
29. Costentin, C.; Robert, M.; Saveant, J. M. Acc. Chem. Res. 2010, 43, 1019–1029.
30. Hsieh, C. C.; Jiang, C. M.; Chou, P. T. Acc. Chem. Res. 2010, 43, 1364–1374.
31. Warren, J. J.; Mayer, J. M. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 5282–5287.
32. Hazra, A.; Soudackov, A. V.; Hammes-Schiffer, S. J. Phys. Chem. C 2010, 114,
difference between product and reactant. The contribution of hydrogen
stretching to the rate due to a vibration-level specific Frank–Condon
nuclear overlap along the hydrogen coordinate is contained in the F.C.
term, which determines the tunnelling probability of hydrogen (⁄, R
and T are Planck’s constant divided by 2p, the gas constant and absolute
temperature, respectively). This model could explain the whole range
1
2319–12332.
3
3
3. Zhang, W.; Rosendahl, S. M.; Burgess, I. J. J. Phys. Chem. C 2010, 114, 2738–2745.
4. Venkataraman, C.; Soudackov, A. V.; Hammes-Schiffer, S. J. Phys. Chem. C 2010,
114, 487–496.
of the phenomena observed, that is, the full range of the observed
3
3
5. Hammes-Schiffer, S.; Soudackov, A. V. J. Phys. Chem. B 2008, 112, 14108–14123.
and references cited therein.
6. Kagayama, N.; Sekiguchi, M.; Inada, Y.; Takagi, H. D.; Funahashi, S. Inorg. Chem.
isotopic differences between the Arrhenius pre-factors from A
to A /A
ꢂ 1 as well as the temperature independent KIEs. A very
important feature of this model takes into account motions along the
H
/A
D
ꢂ 1
D
H
1
994, 33, 1881–1885. and references cited therein.