Au NPs@3D-(N)GFs for aerobic oxidation of hydrocarbons
[7] J. Muzart, Chem. Rev. 1992, 92, 113.
the same conditions. Subsequently, the yield of reaction obtained
using GC is 2% showing that the reaction does not proceed signif-
icantly. The filtered solution was analysed using atomic absorption
spectrometry, indicating that the gold content in the solution is
below the detection limit (0.1ppm) and repeating this test shows
0.10 ppm leaching of the catalyst. Given these results, it can be
deduced that nitrogen doping on the support can increase the
stability of NPs due to the affinity of nitrogen to gold.
The study of catalyst recyclability in practical applications is vital.
So, the recyclability of the AuNPs@3D-(N)GFs for catalytic oxidation
of 2,3-dihydro-1H-indene as a model reaction was tested. Mostly
the stability and recyclability of supported homogeneous catalysts
are measured based on the reaction yield for a long time in each
run, but since catalysis is a totally kinetic phenomenon, only kinetic
data should be considered to determine recyclability, stability and
deactivation. The initial rates measured from kinetic plots are a
good approach to examine recyclability and deactivation. So, we in-
vestigated the oxidation reaction for 1 h, the reaction being moni-
tored using GC. After conducting the reaction for 0.5h, the
reaction mixture was filtered off and AuNPs@3D-(N)GFs separated
as a black solid, which was washed with EtOH (2×5 ml) and reused.
The conversion yield and selectivity for each run are presented in
Fig. 8. Since the conversion yields for six runs do not decrease sig-
nificantly, we may conclude that Au NPs@3D-(N)GFs has good sta-
bility and recyclability.
[8] M. I. bin Saiman, G. L. Brett, R. Tiruvalam, M. M. Forde, K. Sharples,
A. Thetford, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez,
D. M. Murphy, Angew. Chem. Int. Ed. Engl. 2012, 51, 5981.
[9] Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Angew. Chem. Int. Ed.
Engl. 2010, 49, 3356.
[10] H. Zhou, L. Xiao, X. Liu, S. Li, H. Kobayashi, X. Zheng, J. Fan, Chem.
Commun. 2012, 48, 6954.
[11] X. Tong, J. Xu, H. Miao, Adv. Synth. Catal. 2005, 347, 1953.
[12] C. Khouw, C. Dartt, J. Labinger, M. Davis, J. Catal. 1994, 149, 195.
[13] A. Shaabani, E. Farhangi, A. Rahmati, Appl. Catal. A 2008, 338, 14.
[14] B. Cornils, W. A. Herrmann, Applied Homogeneous Catalysis with
Organometallic Compounds, Vol. 2, Weinheim, VCH, 1996.
[15] M. D. Nikalje, A. Sudalai, Tetrahedron 1999, 55, 5903.
[16] G. J. ten Brink, I. W. Arends, R. A. Sheldon, Adv. Synth. Catal. 2002, 344,
355.
[17] B. Karimi, A. Biglari, J. H. Clark, V. Budarin, Angew. Chem. Int. Ed. Engl.
2007, 46, 7210.
[18] P. Gamez, I. W. Arends, J. Reedijk, R. A. Sheldon, Chem. Commun. 2003,
2414.
[19] P. T. Anastas, M. M. Kirchhoff, Acc. Chem. Res. 2002, 35, 686.
[20] J. Clark, Green Chem. 1999, 1, 1.
[21] C. H. Christensen, J. Rass-Hansen, C. C. Marsden, E. Taarning, K. Egeblad,
ChemSusChem 2008, 1, 283.
[22] P. Haider, A. Baiker, J. Catal. 2007, 248, 175.
[23] A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. Engl. 2006, 45, 78.
[24] J. C. Meyer, A. Geim, M. Katsnelson, K. Novoselov, T. Booth, S. Roth,
Nature 2007, 446, 60.
[25] C. Li, G. Shi, Nanoscale 2012, 4, 5549.
[26] Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Müllen, Adv.
Mater. 2012, 24, 513.
[27] Z.-S. Wu, Y. Sun, Y.-Z. Tan, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc.
2012, 134, 19532.
[28] S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski,
R. S. Ruoff, S. O. Kim, Angew. Chem. Int. Ed. 2010, 122, 10282.
[29] B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano 2012, 6,
4020.
[30] C. Hu, H. Cheng, Y. Zhao, Y. Hu, Y. Liu, L. Dai, L. Qu, Adv. Mater. 2012, 24,
5493.
Conclusions
Based on the results, we achieved significant gains: (i) providing a
suitable support for stabilizing and encapsulating Au NPs to control
their size and uniform distributions by nitrogen doping on the sup-
port; (ii) good dispersion of the as-prepared catalyst in water as the
reaction solvent; (iii) embedding base centre (nitrogen dopant) and
active catalyst (Au NPs) on the support, providing a new efficient
bifunctional heterogeneous catalyst which eliminates the need for
an additive base; and (iv) introducing an environmentally friendly
and benign synthetic process for the facile transformation of
selective aerobic oxidation reactions of various alkylarenes into
their corresponding carbonyl compounds in water at room temper-
ature with good yields and high selectivity. Moreover, the recycla-
bility tests showed that the catalyst has good chemical stability in
the reaction medium.
[31] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, ACS Nano 2012, 7,
174.
[32] M. Mahyari, A. Shaabani, J. Mater. Chem. A 2014, 2, 16652.
[33] M. Mahyari, M. S. Laeini, A. Shaabani, Chem. Commun. 2014, 50, 7855.
[34] J. Long, X. Xie, J. Xu, Q. Gu, L. Chen, X. Wang, ACS Catal. 2012, 2, 622.
[35] S. Biella, L. Prati, M. Rossi, J. Catal. 2002, 206, 242.
[36] A. Abad, C. Almela, A. Corma, H. García, Tetrahedron 2006, 62, 6666.
[37] M. Haruta, Catal. Today 1997, 36, 153.
[38] C. Della Pina, E. Falletta, L. Prati, M. Rossi, Chem. Soc. Rev. 2008, 37, 2077.
[39] A. Corma, H. Garcia, Chem. Soc. Rev. 2008, 37, 2096.
[40] A. Abad, P. Concepción, A. Corma, H. García, Angew. Chem. Int. Ed. 2005,
44, 4066.
[41] A. Abad, A. Corma, H. García, Chem. Eur. J. 2008, 14, 212.
[42] V. R. Choudhary, A. Dhar, P. Jana, R. Jha, B. S. Uphade, Green Chem.
2005, 7, 768.
[43] A. Shaabani, M. Mahyari, J. Mater. Chem. A 2013, 1, 9303.
[44] M. Mahyari, A. Shaabani, Appl. Catal. A 2014, 469, 524.
[45] M. Mahyari, A. Shaabani, Y. Bide, RSC Adv. 2013, 3, 22509.
[46] A. Shaabani, M. Mahyari, Catal. Lett. 2013, 143, 1277.
[47] H. Hosseini, M. Mahyari, A. Bagheri, A. Shaabani, Biosens. Bioelectron.
2014, 52, 136.
Acknowledgment
We gratefully acknowledge financial support from the Research
Council of Shahid Beheshti University.
[48] H. Hosseini, M. Mahyari, A. Bagheri, A. Shaabani, J. Power, Sources 2014,
247, 70.
[49] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
[50] L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj,
H. Krishnamurthy, U. Waghmare, C. Rao, Adv. Mater. 2009, 21, 4726.
References
[1] C. Wang, H. Chen, Z. Wang, J. Chen, Y. Huang, Angew. Chem. Int. Ed.
Engl. 2012, 51, 7242.
[2] A. Kar, N. Mangu, H. M. Kaiser, M. Beller, M. K. Tse, Chem. Commun.
2008, 386.
[3] C. Shang, Z.-P. Liu, J. Am. Chem. Soc. 2011, 133, 9938.
[4] M. D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache,
A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, Nature 2005, 437, 1132.
[5] D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley,
A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G. J. Hutchings,
Science 2006, 311, 362.
Supporting Information
Additional supporting information may be found in the online
version of this article at the publisher’s web-site.
[6] A. Shaabani, A. Bazgir, F. Teimouri, D. G. Lee, Tetrahedron Lett. 2002, 43,
5165.
Appl. Organometal. Chem. 2015, 29, 456–461
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc