Angewandte Chemie International Edition
10.1002/anie.202103143
RESEARCH ARTICLE
The difference in the primary structures reflected on the thermal
properties of the copolymers (Figure S6). The multiblock
copolymer was semicrystalline with a T similar to the ester acetal
m
copolymer prepared by polymerization of CL, indicating the ability
of the long CL segments to crystallize. The random copolymer
g
was instead amorphous with a T much lower than the analogous
Keywords Sequence-controlled polymers; surface and bulk
degradation; ester and acetal; atom-economy; one-pot ring-
opening and step-growth polymerization.
[
1] (a) L. N. Woodard, M. A. Grunlan, ACS Macro Lett. 2018, 7, 976-982. (b)
D. Pappalardo, T. Mathisen, A. Finne-Wistrand, Biomacromolecules 2019,
2
0, 1465-1477.
copolymer prepared by polymerizing LA only, a consequence of
the statistical arrangement of the two monomeric units (Figure S5).
[
[
2] T. P. Haider, C. Völker, J. Kramm, K. Landfester, F. R. Wurm, Angew.
Chem., Int. Ed. 2019, 58, 50-62.
3] D. K. Schneiderman, M. A. Hillmyer, Macromolecules 2017, 50, 3733-3749.
The results evidence the broad application scope of the strategy
and signify that the physio-chemical properties of the final polymer,
such as morphology, degree of crystallinity, surface
hydrophobicity or hydrophilicity, degradation rate and mechanism,
are all aspects that could be in principle decided at the set-up
polymerization step by selecting the monomer (or combination of
them), the ratio of monomer(s) to initiator and/or by designing
different microstructures. These findings open up for new
opportunities to control structure and macroscopic properties,
advancing the field of both sequence-controlled and degradable
polymers.
[4] G.-X. Wang, D. Huang, J.-H. Ji, C. Völker, F. R. Wurm, Adv. Sci. 2021, 8,
2001121.
[5] B. Laycock, M. Nikolić, J. M. Colwell, E. Gauthier, P. Halley, S. Bottle, G.
George, Prog. Polym. Sci. 2017, 71, 144-189.
[
[
6] A.-C. Albertsson, I. K. Varma, Biomacromolecules 2003, 4, 1466-1486.
7] (a) T. Fuoco, A. Finne-Wistrand, Biomacromolecules 2019, 20, 3171-3180.
(b) T. Fuoco, T. Mathisen, A. Finne-Wistrand, Polym. Degrad. Stab. 2019,
163, 43-51.
[
[
8] C. M. Thomas, J.-F. Lutz, Angew. Chem., Int. Ed. 2011, 50, 9244-9246.
9] (a) J. Li, R. M. Stayshich, T. Y. Meyer, J. Am. Chem. Soc. 2011, 133, 6910-
6
913. (b) J. Li, S. N. Rothstein, S. R. Little, H. M. Edenborn, T. Y. Meyer, J.
Am. Chem. Soc. 2012, 134, 16352-16359.
[10] R. M. Stayshich, T. Y. Meyer, J. Am. Chem. Soc. 2010, 132, 10920-10934.
[
11] (a) K. A. Miller, E. G. Morado, S. R. Samanta, B. A. Walker, A. Z. Nelson,
S. Sen, D. T. Tran, D. J. Whitaker, R. H. Ewoldt, P. V. Braun, S. C.
Zimmerman, J. Am. Chem. Soc.2019, 141, 2838-2842. (b) T.-G. Hsu, J.
Zhou, H.-W. Su, B. R. Schrage, C. J. Ziegler, J. Wang, J. Am. Chem. Soc.
Conclusion
2020, 142, 2100-2104. (c) Y. Lin, T. B. Kouznetsova, S. L. Craig, J. Am.
Chem. Soc. 2020, 142, 2105-2109. (d) A.-C. Albertsson, M. Hakkarainen,
Science 2017, 358, 872-873. (e) Q. Zhang, Z. Hou, B. Louage, D. Zhou, N.
Vanparijs, B. G. De Geest, R. Hoogenboom, Angew. Chem., Int. Ed. 2015,
The clever one-pot combination of sequential ROP and SGP
enabled sequence-controlled copolymers to be neatly created
and diverse degradability functions to be manipulated in a rational
way. A higher level of control of the primary structure and higher
chemical diversity than classical ring-opening copolymerization
approaches were achieved in a single synthetic procedure, which
reflected on the properties of the copolymers and their
degradation profile. The developed strategy offers advantages
such as (i) high versatility of the structures and control on the
positioning of the degradability functions; (ii) high molar mass
polymers; (iii) ease of synthesis; (iv) atom-economy; (v) the
possibility of performing the reaction at room temperature.
Moreover, it does not require protection (and deprotection)
strategies, and uses organocatalysts and inexpensive,
commercially available reagents and monomers. These
remarkable aspects meet green chemistry principles and should
enable the combination of chemical diversity and controlled
design of degradable macromolecules with scalability. Further
implementations are ongoing to unlock the design of hybrid
polyesters able to degrade through different and controlled
mechanisms such as surface erosion.
54, 10879-10883.
[12] G. Herwig, A. P. Dove, ACS Macro Lett. 2019, 8, 1268-1274.
13] A. Göpferich, Biomaterials 1996, 17, 103-114.
14] L. Bixenmann, J. Stickdorn, L. Nuhn, Polym. Chem. 2020, 11, 2441-2456.
15] (a) R. T. Martin, L. P. Camargo, S. A. Miller, Green Chem. 2014, 16, 1768-
[
[
[
1
773. (b) S. A. Miller, ACS Macro Lett. 2013, 2, 550-554.
[16] (a) A. E. Neitzel, T. J. Haversang, M. A. Hillmyer, Ind. Eng. Chem. Res.
2016, 55, 11747-11755. (b) A. E. Neitzel, L. Barreda, J. T. Trotta, G. W.
Fahnhorst, T. J. Haversang, T. R. Hoye, B. P. Fors, M. A. Hillmyer, Polym.
Chem. 2019, 10, 4573-4583. (c) A. E. Neitzel, M. A. Petersen, E. Kokkoli,
M. A. Hillmyer, ACS Macro Lett. 2014, 3, 1156-1160.
17] (a) Y. Xing, Z. Xu, T. Liu, L. Shi, D. Kohane, S. Guo, Angew. Chem., Int.
Ed. 2020, 59, 7235-7239. (b) M. J.-L. Tschan, N. S. Ieong, R. Todd, J.
Everson, A. P. Dove, Angew. Chem., Int. Ed. 2017, 56, 16664-16668.
18] (a) R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, R. M. Waymouth, J. L.
Hedrick, J. Am. Chem. Soc. 2006, 128, 4556-4557. (b) T. Fuoco, T. T.
Nguyen, T. Kivijärvi, A. Finne-Wistrand, Eur. Polym. J. 2020, 141, 110098.
19] E. Cabianca, F. Chéry, P. Rollin, A. Tatibouët, O. De Lucchi, Tetrahedron
Lett. 2002, 43, 585-587.
[
[
[
[
[
[
20] H. Zhang, E. Ruckenstein, J. Polym. Sci., Part A: Polym. Chem. 2000, 38,
3
751-3760.
21] J. Heller, D. W. H. Penhale, R. F. Helwing, J. Polym. Sci., Polym. Lett. Ed.
980, 18, 293-297.
22] (a) A. Moreno, G. Lligadas, J. C. Ronda, M. Galià, V. Cádiz, Polym. Chem.
019, 10, 5215-5227. (b) R. Tomlinson, M. Klee, S. Garrett, J. Heller, R.
1
2
(
(Note: Comprehensive details of experimental procedures for the
Duncan, S. Brocchini, Macromolecules 2002, 35, 473-480.
23] P. Christ, A. G. Lindsay, S. S. Vormittag, J.-M. Neudörfl, A. Berkessel, A.
C. O'Donoghue, Chem. Eur. J 2011, 17, 8524-8528.
[24] (a) C. Iojoiu, D. Cade, H. Fessi, T. Hamaide, Polym. Int. 2006, 55, 222-228.
(b) K. V. Zaitsev, Y. A. Piskun, Y. F. Oprunenko, S. S. Karlov, G. S. Zaitseva,
I. V. Vasilenko, A. V. Churakov, S. V. Kostjuk, J. Polym. Sci., Part A: Polym.
Chem. 2014, 52, 1237-1250.
synthesis of polymers, characterization methods, Tables of thermal
analysis results, MALDI-ToF-MS calculations and mass loss, Scheme of
side reaction, NMR spectra, MALDI-ToF-MS spectra, DSC thermograms
can be found in the Supporting Information (PDF).))
[
[
25] M. J. Jenkins, K. L. Harrison, Polym. Adv. Technol. 2006, 17, 474– 478.
Acknowledgements
[26] (a) A. Meduri, T. Fuoco, M. Lamberti, C. Pellecchia, D. Pappalardo,
Macromolecules 2014, 47, 534–543. (b) Z. Zhang, R. Kuijer, S. K. Bulstra,
D. W. Grijpma, J. Feijen, Biomaterials 2006, 27, 1741-1748. (c) K.-K. Yang,
X.-L. Wang, Y.-Z. Wang, J. Macromol. Sci. Polymer. Rev. 2002, 42, 373-
398.
The Swedish Research Council (VR Starting Grant n. 2020-
03247) is acknowledged for financial support.
[
27] B. Kost, M. Basko, Polym. Chem. 2021, DOI: 10.1039/d1py00358e.
7
This article is protected by copyright. All rights reserved.