4202
M. Zyder et al. / Journal of Organometallic Chemistry 694 (2009) 4196–4203
ters, and H atoms were included from the geometry of the mole-
cules and were not refined. The intensities were corrected for
absorption [46]; min/max absorption coefficients: 0.678/0.930 for
1 and 0.810/0.980 for 2.
4. Supplementary material
CCDC 719774 and 719773 contain the supplementary
crystallographic data for 1 and 2. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
3.5. General procedure for reaction of nbe in the presence of complexes
1 and 3
Acknowledgments
In a round-bottomed flask equipped with a magnetic stirrer,
complex 1 or 3 was weighed (ca. 0.03 mmol). Next, the solvent
(10 cm3 CH2Cl2 or toluene) and the reagents: nbe, H2O, or norbor-
neol (ca. 1.5 mmol), were added through the septum to a solution
of the molybdenum complex, and the reaction mixture was stirred
at room temperature for 24 h. After that time the solvent was re-
moved in vacuum at room temperature and the residue was ex-
tracted with n-heptane and analyzed by GC–MS. The solid that
was not dissolved in n-heptane was treated with CHCl3 (5 cm3)
and its solution with methanol (10 cm3). The precipitate (polymer)
was then separated from the solution, dried under vacuum, and
weighed.
This work was generously supported by the Polish Ministry of
Science and Higher Education (Grant No. N204 288 534). Dr. M.
Kowalska and S. Baczynski for the measurement of NMR spectra
´
and M. Hojniak for GC–MS analyses.
References
[1] P.K. Baker, Adv. Organomet. Chem. 40 (1996) 45.
[2] P.K. Baker, Chem. Soc. Rev. 27 (1998) 125.
[3] T. Szyman´ ska-Buzar, Coord. Chem. Rev. 249 (2005) 2195.
´
[4] A. Malinowska, A. Kochel, T. Szymanska-Buzar, J. Organomet. Chem. 692
(2007) 3994.
The GC–MS analysis revealed the formation of the following
compounds appearing as retention time increased: norborneol
(C7H12O, Mr = 112.17), chloronorbornane (C7H11Cl, Mr = 130.61),
2,20-binorbornylidene (C14H20, Mr = 188.32) [6], nbe:H2O (2:1) ad-
duct (C14H22O, Mr = 206.32), and nbe trimer (C21H30, Mr = 282.46).
The latter compounds were formed with different yields depend-
ing upon the reaction conditions.
´
[5] A. Malinowska, M. Górski, A. Kochel, T. Szymanska-Buzar, Inorg. Chem.
Commun. 10 (2007) 1233.
[6] A. Malinowska, I. Czelus´niak, M. Górski, T. Szyman´ ska-Buzar, J. Mol. Catal. A:
Chem. 226 (2005) 259.
[7] M. Górski, A. Kochel, T. Szyman´ ska-Buzar, J. Organomet. Chem. 691 (2006)
3708.
[8] M. Górski, T. Szyman´ ska-Buzar, J. Mol. Catal. A: Chem. 257 (2006) 41.
[9] T. Szyman´ ska-Buzar, T. Głowiak, I. Czelus´niak, Inorg. Chem. Commun. 3 (2000)
102.
[10] D.J. Darensbourg, R.L. Kump, Inorg. Chem. 17 (1978) 2680.
[11] M. Ardon, G. Hogarth, D.T.W. Oscroft, J. Organomet. Chem. 689 (2004) 2429.
[12] J.W. Kang, Y.-K. Han, Bull. Korean Chem. Soc. 18 (1997) 433.
[13] E. Lindner, M. Henes, W. Wielandt, K. Eichele, M. Steimann, G.A. Luistra, H.-H.
Görtz, J. Organomet. Chem. 681 (2003) 12.
3.6. Transformation of nbe in CH2Cl2 solution in the presence of in situ
generated compound 1
[14] M. Domostoj, I. Ungureanu, A. Schoenfelder, P. Klotz, A. Mann, Tetrahedron
Lett. 47 (2006) 2205.
[15] F.-C. Liu, P.-S. Yang, C.-Y. Chen, G.-H. Lee, S.-M. Peng, J. Organomet. Chem. 693
(2008) 537.
[16] F.-C. Liu, J.-H. Chen, J.-J. She, G.-H. Lee, S.-M. Peng, J. Organomet. Chem. 691
(2006) 3574.
[17] Y. Yamaguchi, K. Ogata, K. Kobayashi, T. Ito, Inorg. Chim. Acta. 357 (2004)
2657.
[18] A. Mentes, R.D.W. Kemmitt, J. Fawcett, D.R. Russell, J. Organomet. Chem. 660
(2002) 91.
[19] P. Pinto, E. Barranco, M.J. Calhorda, W. Félix, M.G.B. Drew, J. Organomet. Chem.
601 (2000) 34.
[20] J.Y.K. Tsang, M.S.A. Buschhaus, C. Fujita-Takayama, B.O. Patrick, P. Legzdins,
Organometallics 27 (2008) 1634.
[21] T. Szyman´ ska-Buzar, T. Głowiak, I. Czelus´niak, Polyhedron 21 (2002) 2505.
In a round-bottomed flask equipped with a magnetic stirrer, a
solution of complex 1 was prepared in a 3 h reaction of Mo(CO)4-
(pip)2] (0.045 g, 0.12 mmol) and SnCl4 (0.1 cm3, 0.85 mmol) in
dichloromethane (8 cm3) under an atmosphere of nitrogen. Next,
nbe (0.28 g, 3.0 mmol) or its 1:1 molar mixture with H2O or nor-
borneol in 2 cm3 of CH2Cl2 was added through the septum to a
solution of 1, and the reaction mixture was stirred at room temper-
ature for 24 h. After that time the reaction mixture was analyzed as
in Section 3.5.
3.7. Characterization of binorbornyl ether
´
´
[22] T. Szymanska-Buzar, T. Głowiak, I. Czelusniak, J. Organomet. Chem. 585 (1999)
215.
The formation of
a compound with molecular weight
[23] J. Handzlik, M. Stosur, A. Kochel, T. Szyman´ ska-Buzar, Inorg. Chim. Acta 361
Mr = 206.32 (C14H22O) was detected by GC–MS in a mixture of
the products of all reactions of nbe carried out in non-strictly anhy-
drous conditions in the presence of complexes 1 and 3. In reaction
carried out at a 1:1 molar ratio of nbe and H2O, the isolated yield of
the latter compound was 79% in the presence of 1 and 69% in the
presence of 3. GC–MS: C14H22O, Mr = 206.32, m/z (relative inten-
sity): 206 (M+, 1%), 95 (C7H11, 100%), 67 (C5H7, 20%). IR (Film/KBr,
(2008) 502.
[24] R.J. Abraham, A.P. Barlow, A.E. Rowan, Magn. Reson. Chem. 27 (1989) 1074.
[25] G.C. Levy, R.L. Lichter, G.L. Nelson, Carbon-13 Nuclear Magnetic Resonance
Spectroscopy, John Wiley & Sons, New York, 1980. p. 60.
[26] K.J. Ivin, J.C. Mol, Olefin Metathesis and Metathesis Polymerization, Academic
Press, London, 1997.
[27] S.F. Nelsen, L.A. Reinhardt, J. Phys. Org. Chem. 14 (2001) 847.
[28] C.F. Bernasconi, S. Bhattacharya, Organometallics 23 (2004) 1722.
[29] C.F. Bernasconi, M. Ali, F. Lu, J. Am. Chem. Soc. 122 (2000) 1352.
[30] C.F. Bernasconi, G.S. Perez, J. Am. Chem. Soc. 122 (2000) 12441.
[31] C.F. Bernasconi, F.X. Flores, K.W. Kittredge, J. Am. Chem. Soc. 119 (1997) 2103.
[32] C.F. Bernasconi, A.E. Leyes, J. Chem. Soc., Perkin Trans. 2 (1997) 1641.
[33] C.F. Bernasconi, F.X. Flores, J.R. Gandler, A.E. Leyes, Organometallics 13 (1994)
2186.
[34] C.F. Bernasconi, L. García-Río, J. Am. Chem. Soc. 122 (2000) 3821.
[35] M.A. Esteruelas, C. García-Yebra, E. Oñate, Organometallics 27 (2008) 3029.
[36] A.B. Cuenca, G. Mancha, G. Asensio, M. Medio-Simón, Chem. Eur. J. 14 (2008)
1518.
[37] K.J. Miller, M.M. Abu-Omar, Eur. J. Org. Chem. (2003) 1294.
[38] G.V.M. Sharma, T. Rajenda Prasad, A.K. Mahalingam, Tetrahedron Lett. 42
(2001) 759.
cmꢀ1):
m = 2953 (vs), 2869 (s), 1474 (w), 1450 (m), 1438 (w),
1346 (m), 1315 (w), 1308 (w), 1289 (vw), 1221 (vw), 1175 (m),
1149 (m), 1115 (m), 1092 (s), 1040 (m), 1027 (s), 985 (w), 923
(vw), 883 (vw), 840 (w), 803 (m), 763 (vw), 665 (m). 1H NMR
(500 MHz, CDCl3, 298 K): d = 3.36, 3.35 (m, 1H, CH-2), 2.24, 2.22
2
(d, JH–H = 4.7 Hz, 1H, CH-1), 2.18 (s, 1H, CH-4), 1.50 (dd, JH–H
=
3
2
11 Hz, JH–H = 11 Hz, 1H, CH2-3), 1.49 (d, JH–H = 8 Hz, 1H, CH2-7),
2
3
2
1.43 (dd, JH–H = 11 Hz, JH–H = 11 Hz, 1H, CH2-6), 1.37 (dd, JH–H
=
=
3
2
3
11 Hz, JH–H = 11 Hz, 1H, CH2-5), 1.31 (dd, JH–H = 11 Hz, JH–H
2
11 Hz, 1H, CH2-3), 1.04 (d, JH–H = 8 Hz, 1H, CH2-7), 0.99 (dd,
[39] G.V.M. Sharma, A.K. Mahalingam, J. Org. Chem. 64 (1999) 8943.
[40] S. Bouguillon, F. Hénin, J. Muzart, Organometallics 19 (2000) 1434.
[41] Z. Zhu, J.H. Espenson, J. Org. Chem. 61 (1996) 324.
[42] P. Salchi, N. Iranpoor, F.K. Behbahani, Tetrahedron 54 (1998) 943.
[43] C.D. Nenitzescu, V. Przemetzki, Chem. Ber. 69B (1936) 2706.
[44] N. Gürbüz, I. Özdemir, B. Çetinkaya, J.-L. Renaud, B. Demerseman, C. Bruneau,
Tetrahedron Lett. 47 (2006) 535.
3
2
2JH–H = 11 Hz, JH–H = 11 Hz, 1H, CH2-5), 0.94 (dd, JH–H = 11 Hz,
3JH–H = 11 Hz, 1H, CH2-6). 13C{1H} NMR (126 MHz, CDCl3, 298 K):
d = 80.02, 79.51 (1C, CH-2), 41.00, 40.83 (1C, CH-1), 40.21, 40.09
(1C, CH2-3), 35.21, 35.17 (1C, CH-4), 34.90, 34.83 (1C, CH2-7),
28.64, 28.63 (1C, CH2-5), 24.83 (1C, CH2-6).