Paper
RSC Advances
storage modulus (G0) and loss factor (tan d) were measured ꢂin
9 K. L. Robinson and N. S. Lawrence, Anal. Chem., 2006, 78,
2450.
ꢂ
the temperature range of ꢁ20–160 C at a heating rate of 3 C
minꢁ1. The dimension of the rectangle sample strips was 35 ꢄ 10 A. Piermattei, S. Karthikeyanm and R. P. Sijbesma, Nat.
10 ꢄ 1 mm3. Observation of digital microscope with a depth-of-
Chem., 2009, 1, 133.
eld resolution was performed at VHX-1000C (KEYENCE, 11 R. T. M. Jakobs and R. P. Sijbesma, Organometallics, 2012, 31,
Japan). WAXD tests were conducted on a BRUKER D8 discovery
2476.
rotating anode diffractometer using Cu Ka radiation of wave- 12 J. R. Kumpfer and S. J. Rowan, J. Am. Chem. Soc., 2011, 133,
length 0.1542 nm with a VANTEC-1 detector. The goniometer
12866.
scanned diffracted X-rays in the range 2q ¼ 2 to 30ꢂ. SAXS 13 (a) M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan,
experiments were performed on a NanoSTAR-U (BRUKER AXS
INC.) with Cu Ka radiation of wavelength 0.154 nm. The
generator was operated at 40 kV and 650 mA. Two-dimensional
SAXS patterns were obtained using a HI-STAR detector. The
F. L. Beyer, G. L. Fiore, S. J. Rowan and C. Weder, Nature,
2011, 472, 334; (b) S. Coulibaly, A. Roulin, S. Balog,
M. V. Biyani, E. J. Foster, S. J. Rowan, G. L. Fiore and
C. Weder, Macromolecules, 2013, 47, 152.
sample to detector distances were LSD ¼ 1074 mm. The effec- 14 N. Holten-Andersen, M. Harrington, H. Birkedal, B. P. Lee,
tive scattering vector q (q ¼ 4p sin q/l, where 2q is the scattering
P. B. Messersmith, K. Y. C. P. Lee and J. H. Waite, Proc.
Natl. Acad. Sci. U. S. A., 2011, 108, 2651.
angle) at this distance ranges from 0.044 to 2.0 nmꢁ1. TEM
was performed using a FEI Tecnai G2F20 S-TWIN transmission 15 (a) J. Yuan, X. Fang, L. Zhang, G. Hong, Y. Lin, Q. Zheng,
electron microscope, operating at an accelerating voltage of
200 kV.
Y. Xu, Y. Ruan, W. Weng, H. Xia and G. Chen, J. Mater.
Chem., 2012, 22, 11515; (b) G. Hong, H. Zhang, Y. Lin,
Y. Chen, Y. Xu, W. Weng and H. Xia, Macromolecules, 2013,
46, 8649.
Acknowledgements
16 S. Bode, L. Zedler, F. H. Schacher, B. Dietzek, M. Schmitt,
J. Popp, M. D. Hager and U. S. Schubert, Adv. Mater., 2013,
25, 1634.
17 Z. Wei, J. He, T. Liang, H. Oh, J. Athas, Z. Tong, C. Wang and
Z. Nie, Polym. Chem., 2013, 4, 4601.
H.S. Xia acknowledges nancial support from the major project
of Chinese Ministry of Education (313036) and the Programme
of Introducing Talents of Discipline to Universities (B13040),
and National Natural Science Foundation of China (51203102).
18 (a) E. V. Kirkby, J. D. Rule, V. J. Michaud, N. R. Sottos,
S. R. White and J. A. Manson, Adv. Funct. Mater., 2008, 18,
2253; (b) S. Neuser, S. Michaud and S. R. White, Polymer,
2012, 53, 370.
19 E. D. Rodriguez, X. Luo and P. T. Mather, ACS Appl. Mater.
Interfaces, 2011, 3, 152.
20 X. Luo and P. T. Mather, ACS Macro Lett., 2013, 2, 152.
21 J. Zhang, Y. Niu, C. Huang, L. Xiao, Z. Chen, K. Yang and
Y. Wang, Polym. Chem., 2012, 3, 1390.
22 B. T. Michal, C. A. Jaye, E. J. Spence and S. J. Rowan, ACS
Macro Lett., 2013, 2, 694.
Notes and references
1 (a) X. Chen, M. A. Dam, A. Ono, A. Mal, H. Shen, S. R. Nutt,
K. Sheran and F. Wudl, Science, 2002, 295, 1698; (b) X. Chen,
F. Wudl, A. K. Mal, H. Shen and S. R. Nutt, Macromolecules,
2003, 36, 1802.
2 (a) Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara and
K. Matyjaszewski, Adv. Mater., 2011, 50, 1660; (b)
Y. Amamoto, H. Otsuka, A. Takahara and K. Matyjaszewski,
Adv. Mater., 2012, 24, 3975.
3 G. Deng, C. Tang, F. Li, H. Jiang and Y. Chen,
Macromolecules, 2010, 43, 1191.
23 H. Zhang and Y. Zhao, ACS Appl. Mater. Interfaces, 2013, 5,
13069.
4 (a) P. Cordier, F. Tournilhac, C. Soulie-Ziakovic and
L. Leibler, Nature, 2008, 451, 977; (b) Y. Chen,
A. M. Kushner, G. A. Williams and Z. Guan, Nat. Chem.,
2012, 4, 467; (c) J. Hentschel, A. M. Kushner, J. Ziller and
Z. Guan, Angew. Chem., Int. Ed., 2012, 51, 10561.
5 (a) M. Zhang, D. Xu, X. Yan, J. Chen, S. Dong, B. Zheng and
F. Huang, Angew. Chem., Int. Ed., 2012, 51, 7011; (b)
M. Nakahata, Y. Takashima, H. Yamaguchi and A. Harada,
Nat. Commun., 2011, 2, 511.
6 S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann,
B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay
and S. J. Rowan, J. Am. Chem. Soc., 2010, 132, 12051.
7 G. R. Whittell, M. D. Hager, U. S. Schubert and I. Manners,
Nat. Mater., 2011, 10, 176.
24 M. Behl and A. J. Lendlein, J. Mater. Chem., 2010, 20, 3335.
25 I. Bellin, S. Kelch, R. Langer and A. Lendlein, Proc. Natl. Acad.
Sci. U. S. A., 2006, 103, 18043.
26 T. Ware, K. Hearon, A. Lonnecker, K. L. Wooley,
D. J. Maitland and W. Voit, Macromolecules, 2012, 45, 1062.
27 G. Li, G. Fei, H. Xia, J. Han and Y. Zhao, J. Mater. Chem.,
2012, 22, 7692.
28 A. C. Jackson, F. L. Beyer, S. C. Price, B. C. Rinderspacher and
R. H. Lambeth, Macromolecules, 2013, 46, 5416.
29 J. R. Kumpfer, J. Jin and S. J. Rowan, J. Mater. Chem., 2010,
20, 145.
30 Y. H. Kim and R. P. Wool, A theory of healing at a polymer–
polymer interface, Macromolecules, 1983, 41, 1115.
8 S. J. Payne, G. L. Fiore, C. L. Fraser and J. N. Demas, Anal.
Chem., 2010, 82, 917.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 25486–25493 | 25493