Table 1 Physicochemical properties of the sulfonated silica/carbon nanocomposites with various carbon contents
e
Sample
SBETa/m2 g-1
Vtotb/cm3 g-1
Vmesoc/cm3 g-1
Dmesod/nm
Da /nm
Si33C66-673-SO3H
Si50C50-673-SO3H
Si66C33-673-SO3H
Si33C66-823-SO3H
Si50C50-823-SO3H
Si66C33-823-SO3H
471
424
493
—
124
332
0.20
0.25
0.44
—
0.10
0.39
0.02
0.13
0.33
—
0.07
0.35
—
3.6
2.8
1.2
4.4
3.6
2.0
7.6
6.9
—
6.9
6.7
a Surface area (SBET) was calculated by the Brunauer–Emmett–Teller (BET) isotherm method. b Total pore volume (Vtot) was calculated from the
saturation plateau at high relative pressure. c Mesopore volume (Vmeso) was determined according to the t-plot method. d Average mesopore diameter
(Dmeso) was calculated from adsorption branches of the isotherms, based on the Barett–Joyner–Halenda (BJH) method. e Da is the average shrinkage
between neighboring pores after carbonization, based on SAXS data (for details, see the ESI† Table S1).
Table 2 Hydrolysis of cellulose by a sulfonated amorphous sugar
Acknowledgements
catalyst and sulfonated silica/carbon nanocompositesa
This work was performed within the framework of IAP (Belspo),
IDECAT and Methusalem (CASAS, long-term financing from
the Flemish government) projects. S.V.d.V. is an aspirant of
the FWO (Fonds Wetenschappelijk Onderzoek – Vlaanderen),
J.G. thanks IWT for a doctoral fellowship and C.J.G. is a
postdoctoral fellow of the FRS-FNRS (Belgium).
Acid densityb/ Formation rate of
Sample
mmol g-1
glucose/mmol h-1
TOFc/h-1
Sugar catalyst
0.93
2.98
4.17
2.96
2.97
5.57
4.64
3.05
0.06
0.15
0.15
0.19
0.30
0.37
0.41
Si33C66-673-SO3H 0.57
Si50C50-673-SO3H 0.40
Si66C33-673-SO3H 0.31
Si33C66-823-SO3H 0.37
Si50C50-823-SO3H 0.25
Si66C33-823-SO3H 0.15
Notes and references
1 (a) D. Klemm, B. Heublein, H. Fink and A. Bohn, Angew. Chem., Int.
Ed., 2005, 44, 3358; (b) G. W. Huber, S. Iborra and A. Corma, Chem.
Rev., 2006, 106, 4044; (c) G. Centi and R. A. van Santen, Catalysis for
Renewables, Wiley, Chichester, 2007; (d) P. Gallezot, ChemSusChem,
2008, 1, 734; P. Gallezot, Top. Catal., DOI: 10.1007/s11244-010-
9564-y; (e) R. Rinaldi and F. Schu¨th, Energy Environ. Sci., 2009, 2,
610; R. Rinaldi and F. Schu¨th, ChemSusChem, 2009, 2, 1096; (f) V.
Jollet, F. Chambon, F. Rataboul, A. Cabiac, C. Pinel, E. Guillon
and N. Essayem, Green Chem., 2009, 11, 2052; (g) Y. Wu, Z. Fu, D.
Yin, Q. Xi, F. Liu, C. Lu and L. Mao, Green Chem., 2010, 12, 696;
(h) Y. Zhang, A. Wang and T. Zhang, Chem. Commun., 2010, 46,
862; (i) W. Deng, M. Liu, Q. Zhang, X. Tan and Y. Wang, Chem.
Commun., 2010, 46, 2668; (j) N. Villandier and A. Corma, Chem.
Commun., 2010, 46, 4408; (k) J. P. Lange, R. Price, P. M. Ayoub, J.
Louis, L. Petrus, L. Clarke and H. Gosselink, Angew. Chem., Int.
Ed., 2010, 49, 4479; (l) R. Palkovits, Angew. Chem., Int. Ed., 2010,
49, 4336; (m) D. M. Alonso, J. Q. Bond, J. C. Serrano-Ruiz and J. A.
Dumesic, Green Chem., 2010, 12, 992; (n) J. Q. Bond, D. M. Alonso,
D. Wang, R. M. West and J. A. Dumesic, Science, 2010, 327, 1110.
2 (a) S. Deguchi, K. Tsujii and K. Horikoshi, Green Chem., 2008, 10,
623; (b) M. A. Harmer, A. Fan, A. Liauw and R. K. Kumar, Chem.
Commun., 2009, 6610; (c) R. Palkovits, K. Tajvidi, J. Procelewska, R.
Rinaldi and A. Ruppert, Green Chem., 2010, 12, 972.
a Reaction conditions: see Fig. 2. b Acid density was determined by
automatic titration with an aqueous NaOH solution. c TOF = moles
glucose formed per mole of acid site per hour.
Table 3 Reusability of the Si33C66-823-SO3H catalyst system
Cellulose
conversion/%
Entry
Recycle number
Glucose yield/%
1
2
3
4
5
Fresh
60.7
11.9
59.9
54.3
55.8
50.4
3.7
44.1
42.6
42.5
Filtrate solutiona
Recycle 1
Recycle 2
Recycle 3
a The solid catalyst and the cellulose residue from the 1st reaction cycle
were removed by centrifugation and filtration, before reacting the filtrate
solution with a fresh cellulose feed.
3 (a) J. Geboers, S. Van de Vyver, K. Carpentier, K. de Blochouse, P.
Jacobs and B. Sels, Chem. Commun., 2010, 46, 3577; (b) K. Shimizu,
H. Furukawa, N. Kobayashi, Y. Itaya and A. Satsuma, Green Chem.,
2009, 11, 1627.
4 A. C. Salvador, M. C. Santos and J. A. Saraiva, Green Chem., 2010,
12, 632.
5 (a) S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding and
G. Wu, Green Chem., 2006, 8, 325; (b) R. Rinaldi, R. Palkovits and
F. Schu¨th, Angew. Chem., Int. Ed., 2008, 47, 8047; (c) R. Rinaldi,
N. Meine, J. vom Stein, R. Palkovits and F. Schu¨th, ChemSusChem,
2010, 3, 266; (d) I. A. Ignatyev, C. Van Doorselaar, P. G. N. Mertens,
K. Binnemans and D. E. De Vos, ChemSusChem, 2010, 3, 91; (e) C.
Li, Q. Wang and Z. K. Zhao, Green Chem., 2008, 10, 177; (f) L.
Vanoye, M. Fanselow, J. D. Holbrey, M. P. Atkins and K. R. Seddon,
Green Chem., 2009, 11, 390; (g) X. Qi, M. Watanabe, T. M. Aida and
R. L. Smith, ChemSusChem, 2010, DOI: 10.1002/cssc.201000124.
6 S. Deguchi, K. Tsujii and K. Horikoshi, Chem. Commun., 2006, 3293;
S. Deguchi, K. Tsujii and K. Horikoshi, Green Chem., 2008, 10, 191;
S. Deguchi, K. Tsujii and K. Horikoshi, Green Chem., 2008, 10, 623.
7 M. Kitano, D. Yamaguchi, S. Satoshi, K. Nakajima, H. Kato, S.
Hayashi and M. Hara, Langmuir, 2009, 25, 5068.
sulfonated carbon catalysts.21 The minor loss of acid groups was
further corroborated by reacting the filtrate solution of the first
reaction cycle with a fresh cellulose feed (Table 3, entry 2). The
conversion of cellulose and yield to glucose were indeed slightly
higher than those of the blank reaction in Fig. 2.
In conclusion, sulfonated silica/carbon nanocomposites have
been demonstrated to have significant potential for the selec-
tive hydrolysis of cellulose into glucose. Their high catalytic
performance can be attributed to (i) the presence of strong,
accessible Brønsted acid sites and (ii) the hybrid surface structure
constituted by interpenetrated silica and carbon components,
facilitating the adsorption of b-1,4 glucan on the solid catalyst.
Currently, expansion of the catalytic system to include other sub-
strates and applications for lignocellulosic biomass hydrolysis is
in progress.
1562 | Green Chem., 2010, 12, 1560–1563
This journal is
The Royal Society of Chemistry 2010
©