CU(II)-CATALYZED OXIDATION OF THIOLS BY SUPEROXIDE LIGATED TO CO2III
and 4.44 (ꢁ0.3) ꢃ 103 sꢀ1 for cysteine at 25.0 ꢂC. The values suggest
that mercap and cysteine react at comparable rates with 1 in pres-
ence of Cu2+, but tga reacts at a much faster rate.
[7] I. Peler, C. E. Felder, O. Man, I. Silman, J. L. Sussman, Proteins 2004,
54, 20–40.
[8] J. C. Bardwell, Mol. Microbiol. 1994, 14, 199–205.
[9] N. Kharasch, A. S. Arora, Phosphorus and Sulfur 1976, 2, 1–50.
[10] S. Shinkai, S. Yamada, R. Ando, T. Kunitake, Bioorg. Chem. 1980, 9,
238–247.
[11] M. Takhashi, M. Takano, K. Asada, J. Biochem. 1981, 90, 87–94.
[12] R. Munday, C. M. Munday, C. C. Winterbourn, Free Rad. Biol. Med.
2004, 36, 757–764.
The substitution-inert CoIII centers of the CoI2II superoxo
complex (1) cannot be reduced by an inner-sphere path.
Nevertheless, increased [H]+ decelerated the rate, a feature
unusual for an outer-sphere reaction of a CoIII complex.[28–30]
This can be simply explained through equilibria (3), (4), and (5).
Deprotonation of 1 (Equation 3) increases its reactivity, whereas
metal-assisted deprotonation (Equations 4 and 5) of thiols
increases their reactivity. Solutions of Cu+ in the presence of
excess RSꢀ result in the formation of [(CuI)(ꢀSR)] complexes.[31]
In addition, reduction of CuII to CuI by thiols are well-known
reactions (Equation 6).[24,32,33] Although Cu(I) is not stable in
aqueous solution,[34] a number cationic and anionic complexes
of Cu(I) are found to be stable in aqueous solution.[35,36] In fact,
complexes of glutathione and Cu(I) have been suggested to be
intermediates in cellular metabolism and storage of Cu(I).[37]
Thus, the striking catalytic effect exhibited by Cu(II) in the
experiments is mainly attributed to the fact that Cu(II) is
reduced to the unipositive state Cu(I) by organic thiols under
the experimental conditions, and also that the reactivity of
Cu(I) is greatly enhanced when bonded with chelating thiol
ligands. Thus, the Scheme 1 proposed here seems logical for
explaining the Cu2+-ion catalyzed oxidation of aliphatic thiols
by metal-bound superoxide.
[13] R. Mishra, S. Mukhopadhyay, R. Banerjee, Dalton Trans. 2010, 39,
2692–2696.
[14] R. Davies, M. Mori, A. G. Sykes, J. A. Weil, Inorg. Synth. 1982, 12,
206–208.
[15] J. P. Danehy, V. J. Elia, Anal. Chem. 1972, 44, 1281–1284.
[16] O. Folin, J. M. Looney, J. Biol. Chem. 1922, 51, 421–434.
[17] M. Mori, J. A. Weil, M. Ishiguro, J. Am. Chem. Soc. 1968, 90,
615–621.
[18] C. G. Barraclough, G. A. Lawrance, P. A. Lay, Inorg. Chem. 1978, 17,
3317–3322.
[19] R. C. Kapoor, O. P. Kachhwaha, B. P. Sinha, J. Phys. Chem. 1969, 73,
1627–1361.
[20] A. B. Hoffman, H. Taube, Inorg. Chem. 1968, 7, 1971–1976.
[21] M. Mori, J. A. Weil, J. Am. Chem. Soc. 1967, 89, 3732–3744.
[22] R. Davies, M. Mori, A. G. Sykes, J. A. Weil, Inorg. Synth. 1982, 12,
204–205.
[23] A. G. Sykes, J. A. Weil, Prog. Inorg. Chem. 1970, 13, 1–106.
[24] R. Mishra, S. Mukhopadhyay, R. Banerjee, Dalton Trans. 2009,
5469–5473.
[25] K. Mandal, R. Banerjee, Dalton Trans. 2012, 41, 2714–2719.
[26] A. J. Miralles, R. E. Armstrong, A. Haim, J. Am. Chem. Soc. 1977, 99,
1416–1420.
[27] Y. Kurimura, Bull. Chem. Soc. Jap. 1973, 46, 2093–2096.
[28] A. V. Kachur, C. J. Kocha, J. E. Biaglowa, Free Rad. Res. 1998, 28,
259–269.
Acknowledgements
[29] L. Pecci, G. Montefoschi, G. Musci, D. Cavallini, Amino Acids 1997, 13,
355–367
The work was carried out with the financial assistance from
Council of Scientific and Industrial Research (New Delhi, India)
and Department of Science and Technology (New Delhi, India).
[30] S. P. Ghosh, S. K. Saha, R. N. Bose, J. W. Reed, M. C. Ghosh, E. S. Gould,
Inorg. Chem. 1993, 32, 2261–2264.
[31] G. A. Bagiyan, S. A. Grachev, N. V. Soroka, Izv. Akad. Nauk SSSR,
Ser. Khim. 1975, 435, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1975,
24 (Engl. Transl.)].
[32] R. C. Smith, V. D. Reed, Phosphorus, Sulfur, and Silicon 1994, 90,
REFERENCES
147–154.
[1] T. J. Wallace, J. Org. Chem. 1966, 31, 1217–1221.
[2] H. Firouzabadi, N. Iranpoor, F. Kiaeezadeh, J. Toofan, Tetrahedron
1986, 42, 719–725.
[3] A. McKillop, D. Koyunçu, A. Krief, W. Dumont, P. Renier, M. Trabelsi,
Tetrahedron Lett. 1990, 31, 5007–5010.
[4] A. R. Ramesha, S. Chandrasekaran, J. Org. Chem. 1994, 59, 1354–1357.
[5] W. S. Allison, Acc. Chem. Res. 1976, 9, 293–299.
[6] P. Nagy, M. T. Ashby, J. Am. Chem. Soc. 2007, 129, 14082–14091.
[33] S. K. Ghosh, S. K. Saha, M. C. Ghosh, R. N. Bose, J. W. Reed, E. S. Gould,
Inorg. Chem. 1992, 31, 3358–3362.
[34] F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, John
Wiley & Sons, New York, 1988, 757.
[35] M. F. Khan, J. R. J. Sorensen, J. Inorg. Biochem. 1991, 41, 221–234.
[36] J. R. J. Sorensen, Prog. Med. Chem. 1989, 26, 437–568.
[37] J. H. Freedman, M. R. Ciriolo, J. Peisach, J. Biol. Chem. 1989, 264,
5598–5604.
J. Phys. Org. Chem. (2012)
Copyright © 2012 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/poc