Communication
ChemComm
This work was supported by MINECO-Spain (CTQ2016-77989-P
to X. R., CTQ2015-70795-P to M. C., MAT2015-65354-C2-1-R to
D. M. and I. I., 2017 SGR 264 to X. R., and 2014SGR80 to D. M.), the
`
CERCA Programme/Generalitat de Catalunya, ICREA-Academia
´
(X. R. and M. C.), the Ramon Areces Foundation (M. G.-B.) and
the Severo Ochoa Center of Excellence Program (ICN2, Grant
SEV-2017-0706).
Conflicts of interest
There are no conflicts to declare.
Fig. 3 HRMS spectra of the competition experiments of (a) C60 vs. PCBM-C60
and (b) C60 vs. N-methylpyrrolidine-C60
.
Notes and references
of PCBM-C60 was faster as was evidenced by the HRMS spectrum
recorded after 30 min reaction time compared to the one
obtained for N-methylpyrrolidine-C60 (Fig. S52 and S53, ESI†).
The latter observation is in agreement with the higher associa-
tion constant obtained for PCBM-C60.
A competition experiment between C60 fullerene and the
PCBM-C60 derivative further supports the similar values
obtained for their association constants. When 1 equivalent of
the 5ꢀ(BArF)8 capsule was mixed with 2.5 eq. of C60 and 2.5 eq. of
PCBM-C60, in toluene/acetonitrile (4/1) for 2.5 h, very similar
intensity peaks on the HRMS were observed in line with the
similar Ka values (see Fig. 3a and Fig. S54, ESI†). Interestingly,
when an analogous experiment was performed using N-methyl-
pyrrolidine-C60 instead of PCBM-C60, selective encapsulation of
´
´
1 C. Garcıa-Simon, R. Gramage-Doria, S. Raoufmoghaddam, T. Parella,
M. Costas, X. Ribas and J. N. H. Reek, J. Am. Chem. Soc., 2015, 137,
2680–2687.
2 C. Zhao, F. D. Toste, K. N. Raymond and R. G. Bergman, J. Am. Chem.
Soc., 2014, 136, 14409–14412.
3 K. Yamashita, M. Kawano and M. Fujita, Chem. Commun., 2007,
4102–4103.
4 T. R. Cook, Y.-R. Zheng and P. J. Stang, Chem. Rev., 2013, 113,
734–777.
5 J. J. Henkelis and M. J. Hardie, Chem. Commun., 2015, 51,
11929–11943.
6 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley,
Nature, 1985, 318, 162–163.
7 J. J. Ryan, H. R. Bateman, A. Stover, G. Gomez, S. K. Norton,
W. Zhao, L. B. Schwartz, R. Lenk and C. L. Kepley, J. Immunol.,
2007, 179, 665–672.
8 J. Xiao and M. E. Meyerhoff, J. Chromatogr. A, 1995, 715, 19–29.
9 Y. Matsuo, A. Iwashita, Y. Abe, C. Li, K. Matsuo, M. Hashiguchi and
E. Nakamura, J. Am. Chem. Soc., 2008, 130, 15429–15436.
10 G. Dennler, M. C. Scharber and C. J. Brabec, Adv. Mater., 2009, 21,
1323–1338.
C60 occurred. In the latter case, the HRMS spectrum of the crude
material displayed peaks corresponding to the C60C5ꢀ(BArF)8
adduct and only residual peaks corresponding to the N-methyl- 11 C. Garcia-Simon, M. Costas and X. Ribas, Chem. Soc. Rev., 2016, 45,
40–62.
pyrrolidine-C60C5ꢀ(BArF)8 adduct (Fig. 3b and Fig. S55 and S56
12 M. Zhang, H. Xu, M. Wang, M. L. Saha, Z. Zhou, X. Yan, H. Wang,
for comparable ionization behaviors in HRMS, ESI†). The notable
X. Li, F. Huang, N. She and P. J. Stang, Inorg. Chem., 2017, 56,
difference between the association constants of C60 and the
C60-fulleropyrrolidine derivative (Ka(C60)/Ka(C60-fulleropyrrolidine)
B2) also enabled the separation of mono-Prato-C60 using a pre-
viously described solid-washing strategy.22 When a solid sample of
5ꢀ(BArF)8 containing both C60 and N-methylpyrrolidine-C60 was
washed with CS2, the Prato derivative was released, while the
12498–12504.
´
´
´
13 C. Colomban, G. Szaloki, M. Allain, L. Gomez, S. Goeb, M. Salle,
M. Costas and X. Ribas, Chem. – Eur. J., 2017, 23, 3016–3022.
14 T. K. Ronson, W. Meng and J. R. Nitschke, J. Am. Chem. Soc., 2017,
139, 9698–9707.
15 K. Tashiro and T. Aida, Chem. Soc. Rev., 2007, 36, 189–197.
16 W. Meng, B. Breiner, K. Rissanen, J. D. Thoburn, J. K. Clegg and
J. R. Nitschke, Angew. Chem., Int. Ed., 2011, 50, 3479–3483.
C60 fullerene remained trapped within the nanocapsule (see 17 C. Zhang, Q. Wang, H. Long and W. Zhang, J. Am. Chem. Soc., 2011,
133, 20995–21001.
Fig. S57, ESI†).
´
18 V. Martınez-Agramunt, D. G. Gusev and E. Peris, Chem. – Eur. J.,
In summary, contraction of the length of the organic macro-
2018, 24, 14802–14807.
cyclic ligands of the previously described 4ꢀ(BArF)8 capsule by 19 Y. Shi, K. Cai, H. Xiao, Z. Liu, J. Zhou, D. Shen, Y. Qiu, Q. Guo,
C. Stern, M. R. Wasielewski, F. Diederich, W. A. Goddard and
changing biphenyl subunits for naphthalene led to the new
J. F. Stoddart, J. Am. Chem. Soc., 2018, 140, 13835–13842.
tetragonal prismatic nanocapsule 5ꢀ(BArF)8. Remarkably, the
20 S. Kawano, T. Fukushima and K. Tanaka, Angew. Chem., Int. Ed.,
size-selectivity imposed by the anisotropically contracted nano-
capsule allows for the selective separation of C60 from fullerene
extract mixtures. Its capacity to host fullerenes and its size
selectivity towards C60 can be rationalized by the dynamic
adaptability that the capsule structure displays in solution, as
shown by MD simulations. 5ꢀ(BArF)8 also encapsulates C60-PCBM
and N-methylpyrrolidine-C60, displaying a larger affinity for
C60 than for the latter Prato derivative, allowing its selective
purification. Nanocapsule 5ꢀ(BArF)8 sets the knowledge basis
for future purification of C60-derivative mixtures.
2018, 1, 14827–14831.
21 N. Kishi, Z. Li, K. Yoza, M. Akita and M. Yoshizawa, J. Am. Chem.
Soc., 2011, 133, 11438–11441.
´
´
`
´
22 C. Garcıa-Simon, M. Garcia-Borras, L. Gomez, T. Parella, S. Osuna,
J. Juanhuix, I. Imaz, D. Maspoch, M. Costas and X. Ribas, Nat.
Commun., 2014, 5, 5557.
´
´
`
´
23 C. Garcıa-Simon, M. Garcia-Borras, L. Gomez, I. Garcia-Bosch,
S. Osuna, M. Swart, J. M. Luis, C. Rovira, M. Almeida, I. Imaz,
D. Maspoch, M. Costas and X. Ribas, Chem. – Eur. J., 2013, 19,
1445–1456.
24 D. Brynn Hibbert and P. Thordarson, Chem. Commun., 2016, 52,
12792–12805.
25 M. Maggini and M. Prato, J. Am. Chem. Soc., 1993, 115, 9798–9799.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018