2608 J. Am. Chem. Soc., Vol. 123, No. 11, 2001
Imahori et al.
separated donor-acceptor radical ion pairs are generated as a
result of an initial CS followed, in succession, by several charge
shift (CSH) reactions along well-tuned redox gradients.
pointed out recently by Mataga,11b however, the bell-shaped
driving force dependence of the intramolecular CR rates
including both the normal and inverted regions for donor-
acceptor linked systems has yet to be demonstrated.
In this context, an intrinsic property of the 3-dimensional
electron acceptor C60, namely, its small reorganization energy
For intermolecular ET dynamics, the inverted region has
8a,11b,14,15
(
λ) associated with ET reactions, evokes a number of important
rarely been observed.
This infrequent manifestation has
6
-8
consequences.
Most importantly, CS and CR processes are
been rationalized in terms of the distribution of donor-acceptor
11b
accelerated and decelerated, respectively, relative to comparable
systems in which, however, 2-dimensional acceptor moieties
are used (i.e., p-benzoquinone). Therefore, efficient stepwise
CS in a fullerene-containing triad, along a well-designed redox
gradient, can be realized regardless of the solvent environment,
whereas this takes place only occasionally in conventional
distance on the energy gap. In particular, enlarging the driving
0
force, especially into the highly exergonic region (-∆G ET .
0), results in an increase in λ, especially in the solvent
reorganization energy (λs). It should be emphasized that this,
9
in turn, governs the high CS rates. In addition, the Marcus
theory hypothesizes that λs also increases with intermolecular
1
-6
9
systems.
It should be mentioned that these effects are the
donor-acceptor distance. Taking these two effects into account
small reorganization energy and its consequences resulting from
the fullerene’s unique structure and symmetry, which are
ultimately responsible for its high degree of its delocalization
and structural rigidity.6
it seems plausible that observation of the inverted region in
intermolecular ET systems is extremely difficult.1 Such a
change in λ, as a function of separation distance, awaits
experimental confirmation. An appealing approach for ac-
complishing this would be to determine λ values, associated
with special sets of molecules assembled so that each set would
consist of an identical homologous series of donor-acceptor
pairs but with each set having a different characteristic intramo-
lecular donor-acceptor separation. Such an experimental strat-
egy for the evaluation of ET parameters at different donor-
acceptor separations necessitates the design of a minimum of
two homologous donor-acceptor linked series (i.e., dyads and
triads). In these ensembles the redox potentials of donor-
acceptor moieties should be changed without affecting the
relative distance.
1b
-8
The Marcus theory of ET provides a valuable guide for
controlling and optimizing the efficiency of CS versus CR. In
particular, the rates of CR can be markedly slowed by shifting
them deep into the inverted region of the Marcus parabola,
0
where the driving force (-∆G ET) is larger than the total
reorganization energy (λ) of ET.9,10 Extensive efforts have been
directed toward establishing the driving force dependence of
1
1-17
the ET rates,
and thereby probing the inverted region of
8
a,11b,12-15
the Marcus curve in donor-acceptor couples.
As
(
5) (a) Osuka, A.; Mataga, N.; Okada, T. Pure Appl. Chem. 1997, 69,
7
97. (b) Maruyama, K.; Osuka, A.; Mataga, N. Pure Appl. Chem. 1994,
In the present study a novel family of dyad and triad systems
was designed by combining the following building blocks
(electron donor) in various orders: H2P (P ) tetraphenylpor-
phyrin dianion), ZnP, and ferrocene (Fc) with the electron
accepting C60 (see Figure 1). Thus, the above criteria, namely,
different donor-acceptor separations and/or different donor
strengths, are unequivocally given to probe the reorganization
energies and the electronic coupling matrix elements in fullerene-
containing ensembles. We report herein the intramolecular CR
processes in both the normal and inverted regions of the Marcus
curve, using a series of ferrocene-porphyrin-fullerene triads
6
6, 867. (c) Piotrowiak, P. Chem. Soc. ReV. 1999, 28, 143.
(6) (a) Imahori, H.; Sakata, Y. AdV. Mater. 1997, 9, 537. (b) Imahori,
H.; Sakata, Y. Eur. J. Org. Chem. 1999, 2445. (c) Guldi, D. M. Chem.
Commun. 2000, 321. (d) Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000,
3
3, 695. (e) Fukuzumi, S.; Imahori, H. In Electron Transfer in Chemistry;
Balzani, V., Ed.; Wiley-VCH: Weinheim, 2000, in press.
7) (a) Imahori, H.; Hagiwara, K.; Akiyama, T.; Aoki, M.; Taniguchi,
S.; Okada, T.; Shirakawa, M.; Sakata, Y. Chem. Phys. Lett. 1996, 263,
45. (b) Tkachenko, N. V.; Guenther, C.; Imahori, H.; Tamaki, K.; Sakata,
(
5
Y.; Fukuzumi, S.; Lemmetyinen, H. Chem. Phys. Lett. 2000, 326, 344. (c)
Imahori, H.; Tkachenko, N. V.; Vehmanen, V.; Tamaki, K.; Lemmetyinen,
H.; Sakata, Y.; Fukuzumi, S. J. Phys. Chem. A 2001, 105, 1750.
(8) (a) Guldi, D. M.; Asmus, K.-D. J. Am. Chem. Soc. 1997, 119, 5744.
(b) Guldi, D. M.; Neta, P.; Asmus, K.-D. J. Phys. Chem. 1994, 98, 4617.
1
8-20
19
Fc-ZnP-C60
and Fc-H2P-C60, and zincporphyrin-free-
(9) (a) Marcus, R. A. Annu. ReV. Phys. Chem. 1964, 15, 155. (b) Marcus,
2
1
R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. (c) Marcus, R. A.
Angew. Chem. Int. Ed. Engl. 1993, 32, 1111.
base porphyrin-fullerene triad ZnP-H2P-C60 (Figure 1) with
equal edge-to-edge distances (Ree) of 30.3 Å. In addition, these
triads will be compared to a zincporphyrin-fullerene dyad ZnP-
(10) (a) Bixon, M.; Jortner, J. In Electron Transfer; Jortner, J., Bixon,
M., Eds.; John Wiley & Sons: New York, 1999; Part 1, pp 35-202. (b)
Ulstrup, J.; Jortner, J. J. Chem. Phys. 1975, 63, 4358.
2
1-23
C60 (Ree ) 11.9 Å).
Hereby, we highlight the immediate
(11) (a) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 7, 259. (b) Mataga,
impact on the reorganization energy and the electronic coupling
matrix element that stem from fine-tuning the nature and the
separation distance of the intervening spacer. In sum, the present
study provides an unambiguous dependence of ET rate constants
on both the distance and driving force in a series of homologous
donor-acceptor arrays.
N.; Miyasaka, H. In Electron Transfer; Jortner, J., Bixon, M., Eds.; John
Wiley & Sons: New York, 1999; Part 2, pp 431-496.
(12) (a) Miller, J. R.; Calcaterra, L. T.; Closs, G. L. J. Am. Chem. Soc.
1
984, 106, 3047. (b) Closs, G. L.; Miller, J. R. Science 1988, 240, 440.
13) Wasielewski, M. R.; Niemczyk, M. P.; Svec, W. A.; Pewitt, E. B.
J. Am. Chem. Soc. 1985, 107, 1080.
14) (a) Gould, I. R.; Moody, R.; Farid, S. J. Am. Chem. Soc. 1988,
10, 7242. (b) Gould, I. R.; Farid, S. Acc. Chem. Res. 1996, 29, 522.
15) (a) Mataga, N.; Kanda, Y.; Okada, Y. J. Phys. Chem. 1986, 90,
880. (b) Asahi, T.; Mataga, N. J. Phys. Chem. 1991, 95, 1956.
16) (a) Harrison, R. J.; Pearce, B.; Beddard, G. S.; Cowan, J. A.; Sanders,
(
(
1
(
(17) (a) DeGraziano, J. M.; Liddell, P. A.; Leggett, L.; Moore, A. L.;
Moore, T. A.; Gust, D. J. Phys. Chem. 1994, 98, 1758. (b) Osuka, A.; Noya,
G.; Taniguchi, S.; Okada, T.; Nishimura, Y.; Yamazaki, I.; Mataga, N.
Chem. Eur. J. 2000, 6, 33.
(18) Fujitsuka, M.; Ito, O.; Imahori, H.; Yamada, K.; Yamada, H.; Sakata,
Y. Chem. Lett. 1999, 721.
(19) Imahori, H.; Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y.
J. Phys. Chem. B 2000, 104, 2099.
(20) Imahori, H.; Tamaki, K.; Yamada, H.; Yamada, K.; Sakata, Y.;
Nishimura, Y.; Yamazaki, I.; Fujitsuka, M.; Ito, O. Carbon 2000, 38, 1599.
(21) Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. J. Am.
Chem. Soc. 2000, 122, 6535.
3
(
J. K. M. Chem. Phys. 1987, 116, 429. (b) Asahi, T.; Ohkohchi, M.;
Matsusaka, R.; Mataga, N.; Zhang, R. P.; Osuka, A.; Maruyama, K. J. Am.
Chem. Soc. 1993, 115, 5665. (c) Harriman, A.; Heitz, V.; Sauvage, J.-P. J.
Phys. Chem. 1993, 97, 5940. (d) Khundkar, L. R.; Perry, J. W.; Hanson, J.
E.; Dervan, P. B. J. Am. Chem. Soc. 1994, 116, 9700. (e) Heitele, H.;
P o¨ llinger, F.; H a¨ berle, T.; Michel-Beyerle, M. E.; Staab, H. A. J. Phys.
Chem. 1994, 98, 7402. (f) Macpherson, A. N.; Liddell, P. A.; Lin, S.; Noss,
L.; Seely, G. R.; DeGraziano, J. M.; Moore, A. L.; Moore, T. A.; Gust, D.
J. Am. Chem. Soc. 1995, 117, 7202. (g) H a¨ berle, T.; Hirsch, J.; P o¨ llinger,
F.; Heitele, H.; Michel-Beyerle, M. E.; Ander, C.; D o¨ hling, A.; Krieger,
C.; R u¨ ckemann, A.; Staab, H. A. J. Phys. Chem. 1996, 100, 18269. (h)
Tsue, H.; Imahori, H.; Kaneda, T.; Tanaka, Y.; Okada, T.; Tamaki, K.;
Sakata, Y. J. Am. Chem. Soc. 2000, 122, 2279.
(22) Yamada, K.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y.
Chem. Lett. 1999, 895.
(23) Imahori, H.; El-Khouly, M. E.; Fujitsuka, M.; Ito, O.; Sakata, Y.;
Fukuzumi, S. J. Phys. Chem. A. 2001, 105, 325.