Angewandte Chemie International Edition
10.1002/anie.201705900
COMMUNICATION
the PEDOT-PC/CFE after in vivo operation (Figure 4B, blue
column).
Although some coating films have been reported, our use of
PEDOT-PC to coat CFEs for in vivo analysis is remarkable in
terms of the large improvement in the analytical properties of the
method. For example, Nafion, base-hydrolyzed cellulose acetate
Chem. Res. 2012, 45, 533-543; c) D. L. Robinson, A. Hermans,
A. T. Seipel, R. M. Wightman, Chem. Rev. 2008, 108, 2554-
2584.
[2] a) G. S. Wilson, M. A. Johnson, Chem. Rev. 2008, 108, 2462-
2481; b) R. J. Soto, J. R. Hall, M. D. Brown, J. B. Taylor, M. H.
Schoenfisch, Anal. Chem. 2017, 89, 276-299; c) Y. S. Singh, L.
E. Sawarynski, P. D. Dabiri, W. R. Choi, A. M. Andrews, Anal.
Chem. 2011, 83, 6658-6666; d) R. Li, X. Liu, W. Qiu, M. Zhang,
Anal. Chem. 2016, 88, 7769-7776.
[3] a) S. Vaddiraju, I. Tomazos, D. J. Burgess, F. C. Jain, F.
Papadimitrakopoulos, Biosens. Bioelectron. 2010, 25, 1553-
1565; b) M. Frost, M. E. Meyerhoff, Anal. Chem. 2006, 78, 7370-
7377; c) B. D. Ratner, S. J. Bryant, Annu. Rev. Biomed. Eng.
2004, 6, 41-75; d) M. C. Frost, M. E. Meyerhoff, Annu. Rev. Anal.
Chem. 2015, 8, 171-192.
[4] a) J. G. Roberts, J. V. Toups, E. Eyualem, G. S. McCarty, L.
A. Sombers, Anal. Chem. 2013, 85, 11568-11575; b) X. Liu, M.
Zhang, T. Xiao, J. Hao, R. Li, L. Mao, Anal. Chem. 2016, 88,
7238-7244.
[5] a) R. C. Engstrom, R. M. Wightman, E. W. Kristensen, Anal.
Chem. 1988, 60, 652-656; b) S. Marinesco, T. J. Carew, J.
Neurosci. Meth. 2002, 117, 87-97; c) R. F. Vreeland, C. W.
Atcherley, W. S. Russell, J. Y. Xie, D. Lu, N. D. Laude, F.
Porreca, M. L. Heien, Anal. Chem. 2015, 87, 2600-2607.
[6] a) S. F. Chen, J. Zheng, L. Y. Li, S. Y. Jiang, J. Am. Chem.
Soc. 2005, 127, 14473-14478; b) H. Li, P. Dauphin-Ducharme,
N. Arroyo-Curras, C. H. Tran, P. A. Vieira, S. Li, C. Shin, J.
Somerson, T. E. Kippin, K. W. Plaxco, Angew. Chem., Int. Ed.
2017; Angew. Chem. 2017, 129, 7600-7603; c) W. Feng, J. L.
Brash, S. Zhu, Biomaterials 2006, 27, 847-855; d) J. Sibarani,
M. Takai, K. Ishihara, Colloids Surf. B Biointerfaces 2007, 54,
88-93.
(
BCA), fibronectin, and PEDOT/Nafion, and BSA only realized
anti-fouling at some extent and compromise the sensitivity of
bare electrodes in sensing monoamines (i.e., ca.70% for BSA,
[
2c,4b]
ca. 20% for fibronectin, and ca. 15% for BCA).
Although
PEDOT/Nafion showed high anti-fouling property to proteins, the
thickness of film should be carefully controlled to maintain
[
5a,5c]
desired sensitivity.
To validate the PEDOT-PC/CFE for monitoring DA release in
the brain, we used both amperometry and fast-scan cyclic
voltammetry (FSCV) to track DA in vivo. Figure 4C shows the
typical amperometric response obtained at the PEDOT-PC/CFE
implanted in the rat striatum when the animal was stimulated by
local injection of 70 mM KCl. Consistent with the previous
[11]
reports,
KCl stimulation induced a rapid increase in the
current due to the release of DA. We also used FSCV to monitor
DA release with the PEDOT-PC/CFE in the rat NAc by bipolar
stimulating in rat MFB (Figure 4D) and evaluated DA release
according to pre-calibration (Figure S8). We can see the
stimulated release of DA peak pattern and kinetics recorded by
FSCV, which were almost the same as that reported
[
12]
previously. Taken together, these results demonstrate that the
PEDOT-PC/CFE could monitor the release of DA in vivo as
[12]
normal CFEs without time lap, but with less protein adsorption
as described above. Moreover, the excellent properties of the
PEDOT-PC could also be used to establish in vivo
electrochemical methods for monitoring of other molecules such
as oxygen with high reliability (Figure S9).
[7] a) A. L. Gui, E. Luais, J. R. Peterson, J. J. Gooding, ACS
Appl. Mater. Inter. 2013, 5, 4827-4835; b) L. Su, F. Gao, L. Mao,
Anal. Chem. 2006, 78, 2651-2657.
In summary, we have developed an in vivo electrochemical
method with CFEs coated with a cell membrane-mimic film,
PEDOT-PC. The PEDOT-PC coating not only efficiently
prevents the protein adsorption but also well maintains the
sensitivity and temporal resolution toward DA. These unique
properties successfully endow the in vivo measurement of
neurochemicals with high reliability. This strategy is believed to
advance the further development of a new and facile platform for
in vivo measurement of neurochemicals in the brain.
[8] B. Zhu, S. C. Luo, H. Zhao, H. A. Lin, J. Sekine, A. Nakao, C.
Chen, Y. Yamashita, H. H. Yu, Nat. Commun. 2014, 5, 4523.
[9] a) Q. Wei, T. Becherer, S. Angioletti-Uberti, J. Dzubiella, C.
Wischke, A. T. Neffe, A. Lendlein, M. Ballauff, R. Haag, Angew.
Chem., Int. Ed. 2014, 53, 8004-8031; Angew. Chem. 2014, 126,
8138-8169; b) I. Banerjee, R. C. Pangule, R. S. Kane, Adv.
Mater. 2011, 23, 690-718; c) M. Rabe, D. Verdes, S. Seeger,
Adv. Colloid Interface Sci. 2011, 162, 87-106; d) E. A. Vogler,
Adv. Colloid Interface Sci. 1998, 74, 69-117.
[
10] a) W. Harreither, R. Trouillon, P. Poulin, W. Neri, A. G.
Acknowledgements
Ewing, G. Safina, Electrochim. Acta 2016, 210, 622-629; b) W.
Harreither, R. Trouillon, P. Poulin, W. Neri, A. G. Ewing, G.
Safina, Anal. Chem. 2013, 85, 7447-7453.
[
2
The authors are grateful for financial support from the National
Science Foundation of China (Grant No. 21621062, 21435007,
and 21210007 for L. M., 21475149, 21522509 for M.Z.), the
National Basic Research Program of China (2013CB933704 and
11] P. Zhong, P. Yu, K. Wang, J. Hao, J. Fei, L. Mao, Analyst
015, 140, 7154-7159.
12] P. A. Garris, R. M. Wightman, J. Neurosci. 1994, 14, 442-
50.
[
4
2016YFA0200104), China Postdoctoral Science Foundation and
the Chinese Academy of Sciences.
Keywords: In vivo electrochemistry • Antifouling •
Electropolymerization • Zwitterionic phosphocholine • Dopamine
[
1] a) T. Xiao, F. Wu, J. Hao, M. Zhang, P. Yu, L. Mao, Anal.
Chem. 2017, 89, 300-313; b) M. Zhang, P. Yu, L. Mao, Acc.
4
This article is protected by copyright. All rights reserved.