Journal of the American Chemical Society
Page 4 of 6
(2) (a) Ziessel, R.; Ulrich, G.; Haefele, A.; Harriman, A. An Artificial
similar condition, ESY alone was found to be non-emissive upon
excitation at 410 nm (Figure S24), ruling out the possibility of
direct excitation of ESY. Moreover, a substantial increase in the
quantum yields of the metallacycles was observed in the presence
of ESY, which suggests that ESY accepts and emits most of the
excitation energy. The energy transfer efficiencies are calculated
as 65 % and 52 % in the 4a+ESYand 5a+ESY systems
respectively at a 10:1 donor/acceptor ratio, which are comparable
with some of the recently reported single molecule based
supramolecular light-harvesting systems.15,19
Light-Harvesting Array Constructed from Multiple Bodipy Dyes. J. Am.
Chem. Soc. 2013, 135, 11330-11344. (b) Shi, Y.; Cao, X.; Hu, D.; Gao,
H. Highly Branched Polymers with Layered Structures that Mimic Light-
Harvesting Processes. Angew. Chem. Int. Ed. Engl. 2018, 57, 516-520.
1
2
3
4
5
6
7
8
(3) (a) Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C.; George, S. J.
Molecular
Wire
Encapsulated
into
πꢀOrganogels:
Efficient
Supramolecular Light-Harvesting Antennae with Color-Tunable
Emission. Angew. Chem. Int. Ed. Engl. 2007, 46, 6260-6265. (b) Ardoña,
H. A. M.; Draper, E. R.; Citossi, F.; Wallace, M.; Serpell, L. C.; Adams,
D. J.; Tovar, J. D. Kinetically Controlled Coassembly of
Multichromophoric Peptide Hydrogelators and the Impacts on Energy
Transport. J. Am. Chem. Soc. 2017, 139, 8685-8692.
9
The best way to understand the energy transfer process is to
measure the fluorescence lifetime of the donor in the presence of
the acceptor. Therefore, fluorescence decay experiments were
carried out to support the occurrence of the light-harvesting
process. The fluorescence lifetime of the metallacycle 4 (τ1= 0.75
ns and τ2 = 2.94 ns) was found to be higher than the fluorescence
lifetime of 4 in the presence of ESY (τ1= 0.51 ns and τ2 = 2.65 ns)
(Figure 4c). Similarly, the fluorescence lifetime of the assembly
of 5 and ESY (τ1= 0.57 ns and τ2 = 2.86 ns) was found to be
shorter (Figure 4d) than the fluorescence lifetime of 5 (τ1= 0.75 ns
and τ2 = 2.97 ns). These results indicate that the energy transfer
takes place from the metallacycle to the ESY (Figure 4e).
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) (a) Calver, C. F.; Schanze, K. S.; Cosa, G. Biomimetic Light-
Harvesting Antenna Based on the Self-Assembly of Conjugated
Polyelectrolytes Embedded within Lipid Membranes. ACS Nano 2016, 10,
10598-10605. (b) Okazawa, Y.; Kondo, K.; Akita, M.; Yoshizawa, M.
Polyaromatic Nanocapsules Displaying Aggregation-Induced Enhanced
Emissions in Water. J. Am. Chem. Soc. 2015, 137, 98−101.
(5) (a) Liu, Y.; Jin, J.; Deng, H.; Li, K.; Zheng, Y.; Yu, C.; Zhou, Y.
Protein-Framed Multi-Porphyrin Micelles for a Hybrid Natural–Artificial
Light-Harvesting Nanosystem. Angew. Chem. Int. Ed. Engl. 2016, 55,
7952-7957. (b) Li, C.; Zhang, J.; Zhang, S.; Zhao, Y. Efficient Light-
Harvesting Systems with Tunable Emission through Controlled
Precipitation in Confined Nanospace. Angew. Chem. Int. Ed. Engl. 2019,
58, 1643-1647.
In conclusion, two fluorescent hexagonal metallacycles (4 and
5) were devised to construct artificial light-harvesting systems.
The metallacycles were found to have good fluorescence
properties and AIEE characteristics. Most importantly, simple
mixing of the acceptor (Eosin Y) and a metallacycle, results in an
efficient Förster resonance energy transfer (FRET) process
between the metallacycle and ESY, leading to the in-situ
formation of an efficient artificial LHS. These artificial LHSs
exhibit good energy transfer efficiencies, as high as 65% in the
4a+ESY system at a 10:1 donor/acceptor ratio. We anticipate that
understanding the light-harvesting properties in such
supramolecular coordination complexes will open up new
possibilities for the design and fabrication of LHSs in the future.
(6) (a) Li, J.-J.; Chen, Y.; Yu, J.; Cheng, N.; Liu, Y. A Supramolecular
Artificial Light-Harvesting System with an Ultrahigh Antenna Effect.
Adv. Mater. 2017, 29, 1701905. (b) Guo, S.; Song, Y.; He, Y.; Hu, X.-Y.;
Wang, L. Highly Efficient Artificial Light-Harvesting Systems
Constructed in Aqueous Solution Based on Supramolecular Self-
Assembly. Angew. Chem. Int. Ed. Engl. 2018, 57, 3163-3167.
(7) (a) Williams, D. E.; Rietman, J. A.; Maier, J. M.; Tan, R.; Greytak, A.
B.; Smith, M. D.; Krause, J. A.; Shustova, N. B. Energy Transfer on
Demand:
Photoswitch-Directed
Behavior
of
Metal–Porphyrin
Frameworks. J. Am. Chem. Soc. 2014, 136, 11886-11889. (b) Lee, H.;
Jeong, Y.-H.; Kim, J.-H.; Kim, I.; Lee, E.; Jang, W.-D. Supramolecular
Coordination Polymer Formed from Artificial Light-Harvesting
Dendrimer. J. Am. Chem. Soc. 2015, 137, 12394-12399.
(8) (a) Winiger, C. B.; Li, S.; Kumar, G. R.; Langenegger, S. M.; Häner,
R. Long-Distance Electronic Energy Transfer in Light-Harvesting
Supramolecular Polymers. Angew. Chem. Int. Ed. Engl. 2014, 53, 13609-
13613. (b) Jiang, Y.; McNeill, J. Light-Harvesting and Amplified Energy
Transfer in Conjugated Polymer Nanoparticles. Chem. Rev.2017, 117,
838-859.
ASSOCIATED CONTENT
Supporting Information
Experimental details and characterization data of all new
compounds.
The Supporting Information is available free of charge on the
(9) (a) Sato, S.; Iida, J.; Suzuki, K.; Kawano, M.; Ozeki, T.; Fujita, M.
Fluorous Nanodroplets Structurally Confined in an Organopalladium
Sphere. Science 2006, 313, 1273-1276. (b) Pluth, M. D.; Bergman, R. G.;
Raymond, K. N. Acid Catalysis in Basic Solution: A Supramolecular Host
Promotes Orthoformate Hydrolysis. Science 2007, 316, 85-88. (c) Park,
K.-M.; Kim, S.-Y.; Heo, J.; Whang, D.; Sakamoto, S.; Yamaguchi, K.;
Kim, K. Designed Self-Assembly of Molecular Necklaces. J. Am. Chem.
Soc. 2002, 124, 2140-2147. (d) Freye, S.; Michel, R.; Stalke, D.;
Pawliczek, M.; Frauendorf, H.; Clever, G. H. Template Control over
Dimerization and Guest Selectivity of Interpenetrated Coordination
Cages. J. Am. Chem. Soc. 2013, 135, 8476-8479. (e) Li, S.; Huang, J.;
Cook, T. R.; Pollock, J. B.; Kim, H.; Chi, K.-W.; Stang, P. J. Formation of
[3]Catenanes from 10 Precursors via Multicomponent Coordination-
Driven Self-Assembly of Metallarectangles. J. Am. Chem. Soc. 2013, 135,
2084-2087. (f) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J.
Supramolecular Coordination: Self-Assembly of Finite Two- and Three-
Dimensional Ensembles. Chem. Rev.2011, 111, 6810-6918. (g) Forgan, R.
S.; Sauvage, J.-P.; Stoddart, J. F. Chemical Topology: Complex Molecular
Knots, Links, and Entanglements. Chem. Rev.2011, 111, 5434-5464. (h)
Ayme, J.-F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.;
Schultz, D. Pentameric Circular Iron(II) Double Helicates and a Molecular
Pentafoil Knot. J. Am. Chem. Soc. 2012, 134, 9488-9497. (i) Saha, M. L.;
Schmittel, M. From 3-Fold Completive Self-Sorting of a Nine-Component
Library to a Seven-Component Scalene Quadrilateral. J. Am. Chem. Soc.
2013, 135, 17743-17746. (j) Yan, X.; Jiang, B.; Cook, T. R.; Zhang, Y.;
Li, J.; Yu, Y.; Huang, F.; Yang, H.-B.; Stang, P. J. Dendronized
Organoplatinum(II) Metallacyclic Polymers Constructed by Hierarchical
Coordination-Driven Self-Assembly and Hydrogen-Bonding Interfaces. J.
Am. Chem. Soc. 2013, 135, 16813-16816. (k) Sun, Y.; Li, S.; Zhou, Z.;
AUTHOR INFORMATION
Corresponding Authors
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
P.J.S. thanks the U.S. National Institutes of Health (Grant R01
CA215157) for financial support. P.S.M. thanks the SERB (India)
for financial support (Grant No. CRG/2018/000315). S.B. thanks
CSIR India for research fellowship. K. A. is thankful to Heng
Wang and Ruidong Ni for their help in ESI-TOF-MS analysis.
REFERNCES
(1) McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-
Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Crystal
structure of an integral membrane light-harvesting complex from
photosynthetic bacteria. Nature 1995, 374, 517-521.
4
ACS Paragon Plus Environment