868 Journal of Natural Products, 2008, Vol. 71, No. 5
Notes
to that reported in d6-acetone solution at 80 MHz;33 13C NMR (125
MHz) δ 151.9 (Ar), 145.7 (Ar), 138.7 (Ar), 129.0 (Ar), 128.9 (ArH),
128.8 (Ar), 128.2 (ArH), 124.1 (ArH), 122.7 (ArH), 98.5 (C-3), 63.6
(OCH3), 56.1 (OCH3).
Acknowledgment. We thank Dr. M. McIldowie for noting the
discrepancy in the published 13C NMR spectra of kalasinamide, Mr.
R. Duncan for his contribution to its synthesis, as part of an
undergraduate research project, Associate Professor E. Ghisalberti for
helpful advice, and Dr. T. Reeder for mass spectra. M.N.G. is the
recipient of an UWA Postgraduate Award.
1,4-Dimethoxy-2-naphthylamine (4). A solution of 3 (338 mg, 1.45
mmol) in EtOAc (10 mL) was stirred overnight with 10% Pd/C (35
mg) under an atmosphere of H2. The suspension was washed through
a Celite pad with EtOAc, the filtrate was evaporated, and the residue
was subjected to flash chromatography. Elution with hexanes-EtOAc
(4:1) afforded 4 as a dark purple solid (265 mg, 90%): Rf 0.16
References and Notes
(1) Tuchinda, P.; Pohmakotr, M.; Munyoo, B.; Reutrakul, V.; Santisuk,
T. Phytochemistry 2000, 53, 1079–1082.
(2) Thinapong, P.; Rangsiman, O.; Tuchinda, P.; Munyoo, B.; Pohmakotr,
M.; Reutrakul, V. Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
2000, C56, e309–e310.
(3) Wu, Y.-C.; Chang, F.-R.; Chen, C.-Y. J. Nat. Prod. 2005, 68, 406–
408.
(4) Chemical abstracts and the abstract of the isolation paper (ref 3) use
the spelling “atemoine”, but the body of the paper uses “artemoine”,
despite the plant name (Annona atemoya).
(5) Tuchinda, P.; Pohmakotr, M.; Reutrakul, V.; Thanyachareon, W.;
Sophasan, S.; Yoosook, C.; Santisuk, T.; Pezzuto, J. M. Planta Med.
2001, 67, 572–575.
(6) Previous papers have used non-IUPAC names and numbering systems
for kalasinamide.
(7) Nakata, M.; Wada, S.; Tatsuta, K.; Kinoshita, M. Bull. Chem. Soc.
Jpn. 1985, 58, 1801–1806.
(8) Kaslow, C. E.; Sommer, N. B. J. Am. Chem. Soc. 1946, 68, 644–647.
(9) Lopez-Alvarado, P.; Avendano, C.; Menendez, J. C. Synthesis 1998,
186–194.
(10) Ashrof, M. A.; Raman, P. S. J. Indian Chem. Soc. 1994, 71, 733–
737.
(11) Takayama, K.; Iwata, M.; Hisamichi, H.; Okamoto, Y.; Aoki, M.;
Niwa, A. Chem. Pharm. Bull. 2002, 50, 1050–1059.
(12) Kelly, T. R.; Field, J. A.; Li, Q. Tetrahedron Lett. 1988, 29, 3545–
3546.
(13) Gollnick, K.; Schenck, G. O. Oxygen as a dienophile. In 1,4-
Cycloaddition Reactions; Hamer, J., Ed.; Academic Press: London,
1967; Vol. 8, pp 255–344.
(14) Dufraisse, C.; Priou, R. Bull. Soc. Chim. 1939, 6, 1649–1656.
(15) Lan, Y.-H.; Chang, F.-R.; Yang, Y.-L.; Wu, Y.-C. Chem. Pharm. Bull.
2006, 54, 1040–1043.
1
hexanes-EtOAc (9:1); H NMR (500 MHz) δ 8.09 (1H, d, J ) 8.1
Hz, ArH), 7.84 (1H, d, J ) 8.2 Hz, ArH), 7.47–7.44 (1H, m, ArH),
7.25–7.22 (1H, m, ArH), 6.37 (1H, s, H-3), 4.05–3.90 (2H, br s, NH2),
1
3.94 (3H, s, OCH3), 3.85 (3H, s, OCH3). The H NMR spectrum was
different from that reported in d6-acetone solution at 80 MHz.33
N-(1,4-Dimethoxy-2-naphthyl)-3-oxobutanamide (6). A solution
of 3 (587 mg, 2.52 mmol) in toluene (10 mL) was stirred with 10%
Pd/C (35 mg) under an atmosphere of H2 for 3.5 h. The reaction mixture
was purged of H2 with N2, then freshly distilled diketene (5) (212 µL,
2.75 mmol) was added and the mixture was heated under reflux. After
7 h more diketene (38 µL, 0.49 mmol) was added and the mixture was
stirred at 70 °C overnight. The suspension was washed through a Celite
pad with Et2O (2 × 20 mL), then MeOH (2 × 20 mL), the filtrate was
evaporated, and the green residue was subjected to flash chromatog-
raphy. Elution with hexanes-EtOAc (9:1–3:2 gradient) afforded 6 as
an orange gum (632 mg, 88%), which crystallized from MeOH as amber
prisms: mp 97–97.5 °C; Rf 0.18 hexanes-EtOAc (3:2); IR (neat) νmax
3274 (N-H, w br), 1712 (CdO, m), 1673 (NCdO, m) cm-1; 1H NMR
(500 MHz)34 δ 9.70 (br s, 1H, NH), 8.20 (1H, ddd, J ) 8.4, 1.3, 0.7
Hz, H-5′), 7.99–7.96 (2H, m, H-3′ and H-8′), 7.52 (1H, ddd, J ) 8.4,
6.8, 1.3 Hz, H-7′), 7.40 (1H, ddd, J ) 8.4, 6.8, 1.3 Hz, H-6′), 4.00
(3H, s, 4′-OCH3), 3.95 (3H, s, 1′-OCH3), 3.68 (2H, s, H-2), 2.36 (3H,
s, H-4); 13C NMR (125 MHz)22 δ 204.7 (CdO), 163.6 (NCdO), 152.0
(C-4′), 136.9 (C-1′), 127.53 and 127.49 (C-2′ and C-8a′), 126.8 (C-6′),
124.2 (C-7′), 123.1 (C-4a′), 122.4 (C-5′), 121.0 (C-8′), 98.5 (C-3′),
61.6 (1′-OCH3), 55.7 (4′-OCH3), 50.0 (CH2), 31.1 (OdCCH3); EIMS
m/z 287 [M]•+ (15), 272 (11), 214 (13), 203 (16), 188 (100); HREIMS
m/z 287.1157 (calcd for C16H17NO4, 287.1158); anal. C 67.1%, H 5.8%,
N 4.8%; calcd for C16H17NO4, C 66.9%, H 6.0%; N 4.9%.
(16) Wang, Q.; He, M.; Liang, J. Zhongcaoyao 2003, 34, 277–280.
(17) Zhang, Y.-J.; Kong, M.; Chen, R.-Y.; Yu, D.-Q. J. Nat. Prod. 1999,
62, 1050–1052.
5,10-Dimethoxy-4-methylbenzo[g]quinolin-2(1H)-one (Kalasin-
amide) (1). Method A: A solution of 6 (22 mg, 0.077 mmol) in 85%
phosphoric acid (2 mL) was stirred at 85 °C in a stoppered vial for
3 h. The resulting solution was poured onto ice and extracted with
EtOAc (3 × 10 mL). The extract was washed with H2O (10 mL) and
brine (10 mL), dried, and evaporated to yield a yellow residue (20
mg) comprising kalasinamide (6) (17 mg, 82%) and marcanine A (8)
(1.7 mg, 9%).35
(18) Soonthornchareonnon, N.; Suwanborirux, K.; Bavovada, R.; Patara-
panich, C.; Cassady, J. M. J. Nat. Prod. 1999, 62, 1390–1394.
(19) Ichino, C.; Soonthornchareonnon, N.; Chuakul, W.; Kiyohara, H.;
Ishiyama, A.; Sekiguchi, H.; Namatame, M.; Otoguro, K.; Omura,
S.; Yamada, H. Phytother. Res. 2006, 20, 307–309.
(20) Chen, C.-Y.; Chang, F.-R.; Shih, Y.-C.; Hsieh, T.-J.; Chia, Y.-C.;
Tseng, H.-Y.; Chen, H.-C.; Chen, S.-J.; Hsu, M.-C.; Wu, Y.-C. J. Nat.
Prod. 2000, 63, 1475–1478.
Method B: All solvents used were deoxygenated by bubbling through
Ar for at least 1.5 h, and all manipulations were carried out in the
minimum light practicable. Phosphoric acid (85%, 1 mL) was added
to 6 (87 mg, 0.32 mmol), and the resulting solution was stirred
vigorously in the dark for 15 min. The solution was then heated at 80
°C for 2 h. The reaction mixture was poured onto cold H2O (10 mL),
basified with saturated Na2CO3 solution (10 mL), and extracted with
EtOAc (3 × 10 mL). The extract was washed with brine (2 × 10 mL),
dried, and evaporated under a stream of dry N2, giving a yellow residue.
Recrystallization (EtOH-DCM) and filtration under a flow of Ar
afforded 6 as green prisms: mp 240–242 °C [lit.1 234–235.5 °C]; Rf
(21) Chang, F.-R.; Chen, C.-Y.; Hsieh, T.-J.; Cho, C.-P.; Wu, Y.-C. J. Chin.
Chem. Soc. (Taipei) 2000, 47, 913–920.
(22) Limantara, L.; Koehler, P.; Wilhelm, B.; Porra, R. J.; Scheer, H.
Photochem. Photobiol. 2006, 82, 770–780.
(23) Flors, C.; Nonell, S. Acc. Chem. Res. 2006, 39, 293–300.
(24) Chang, F.-R.; Chen, K.-S.; Ko, F.-N.; Teng, C.-M.; Wu, Y.-C. Chin.
Pharm. J. 1995, 47, 483–491.
(25) Bhakuni, D. S.; Tewari, S.; Dahr, M. M. Phytochemistry 1972, 11,
1819–1822.
(26) Phytoalexins are antimicrobial secondary metabolites that are rapidly
synthesised as a result of stress (from ref 23).
(27) Chang, F. R.; Wei, J. L.; Teng, C. M.; Wu, Y. C. J. Nat. Prod. 1998,
61, 1457–1461.
(28) Rasamizafy, S.; Hocquemiller, R.; Cassels, B. K.; Cave, A. J. Nat.
Prod. 1987, 50, 759–761.
(29) Etienne, A. Compt. Rend. 1944, 218, 841–843.
(30) Goulart, M. O. F.; Sant’ana, A. E. G.; De Oliveira, A. B.; De Oliveira,
G. G.; Maia, J. G. S. Phytochemistry 1986, 25, 1691–1695.
(31) Arango, G. J.; Cortes, D.; Cassels, B. K.; Cave, A.; Merienne, C.
Phytochemistry 1987, 26, 2093–2098.
1
0.13 hexanes-EtOAc (3:2); H NMR (400 MHz) δ 8.96 (1H, br s,
NH), 8.18 (1H, ddd, J ) 8.6, 1.2, 0.8 Hz, ArH), 8.05 (1H, ddd, J )
8.6, 1.2, 0.8 Hz, ArH), 7.58 (1H, ddd, J ) 8.6, 6.7, 1.2 Hz, ArH), 7.47
(1H, ddd, J ) 8.6, 6.7, 1.2 Hz, ArH), 6.46 (1H, dq, J ) 2.4, 1.3 Hz,
H-3), 3.99 (3H, s, OCH3), 3.97 (3H, s, OCH3), 2.79 (3H, d, J ) 1.3
Hz, 4-CH3). Refer to Table 1 for 13C NMR data.
4-Methylbenzo[g]quinoline-2,5,10(1H)-trione (Marcanine A) (8).
The quinone was obtained from kalasinamide solid samples that had
completely oxidized upon standing in ambient light. Recrystallization
from MeOH gave 8 as orange needles: mp 295 °C dec [lit.36 >300 °C;
lit.21 249–251 °C]; Rf 0.20 DCM-MeOH (99:1); 1H NMR (400 MHz)
δ 9.80 (1H, br s, NH), 8.24 (1H, ddd, J ) 7.7, 1.3, 0.6 Hz, ArH), 8.19
(1H, ddd, J ) 7.7, 1.4, 0.6 Hz, ArH), 7.87 (1H, ddd, J ) 7.7, 7.6, 1.4
Hz, ArH), 7.78 (1H, ddd, J ) 7.7, 7.6, 1.3 Hz, ArH), 6.69 (1H, q, J )
1.2 Hz, H-3), 2.71 (3H, d, J ) 1.2 Hz, 4-CH3). The 1H NMR spectrum
was similar to that reported at 500 MHz.18
(32) Karichiappan, K.; Wege, D. Aust. J. Chem. 2000, 53, 743–747.
(33) Malesani, G.; Ferlin, M. G. J. Heterocycl. Chem. 1985, 22, 1141–
1142.
(34) NMR assignments were made with the assistance of HSQC and HMBC
experiments.
(35) Determined by total mass and 1H NMR integrals.
(36) Perez, J. M.; Vidal, L.; Grande, M. T.; Menendez, J. C.; Avendano,
C. Tetrahedron 1994, 50, 7923–7932.
NP070582Z