4190
A. Bekaert et al. / Tetrahedron Letters 46 (2005) 4187–4191
and the solution was stirred for 10 min. Then, N-methyl-
pyrrolidin-2-one, 250 mL, was added by the dropping
funnel (two drops per second). The mixture was stirred for
1 h at 10 ꢁC and orange crystals were collected, washed
with Et2O (4 · 50 mL) and dried under vacuum to give
440 g of MPHT 1 as orange crystals (yield = 87%). Mp
122–124 ꢁC. 1H NMR (CDCl3, 200 MHz): d 2.25 (m, 4H),
2.90 (t, 4H, J = 8 Hz), 3.00 (s, 6H), 3.75 (t, 4H,
J = 7.2 Hz), 14.6 (br s, 1H). 13C NMR (CDCl3,
200 MHz): d 18.3, 31.4, 33.3, 52.8, 178.3. IR cmꢀ1: 3339,
1640, 1420, 1228.
the selective mono- and/or dibromination of various
substituted tetralones. Moreover, under base-free condi-
tions, in boiling CH3CN, the N-methylpyrrolidin-2-one
liberated in the media assisted and completed the ther-
mal dehydrobromination of intermediary dibrominated
tetralones to lead in a one-pot sequence to the expected
2-bromo-1-naphtol derivatives.
The ease of MPHT use in selective bromination(s) and
subsequent dehydrobromination(s) together with its
crystalline state, make it very attractive in organic chem-
istry. Other selective bromination reactions with ali-
phatic ketones and electrophilic aromatic bromination
are now in progress in our laboratory.
12. Daniels, W. E.; Chaddix, M. E.; Glickman, S. A. J. Org.
Chem. 1963, 28, 573–574.
13. General procedure for the a,a-dibromination of tetralones
with MPHT 1: In a round bottomed flask, a solution of
tetralone 2 (1 mmol) in CH3CN (10 mL) was stirred in an
oil bath at 80 ꢁC and then MPHT (2 mmol) was added
dropwise (each drop was added only after the previous
drop had completely decolourized). The mixture was then
stirred for 30 additional minutes at this temperature. The
reaction mixture was cooled to 20 ꢁC and treated with a
saturated Na2S2O3 solution. The organic layer was washed
with HCl 10% (3 · 10 mL) and dried over MgSO4.
Removal of the solvent yielded a crude product, which
was purified by silica gel flash chromatography to afford 3
(see Table 1 for yields).
Acknowledgements
The CNRS is gratefully acknowledged for financial sup-
port of this research. We wish to thank also la Ligue
Contre le Cancer for a doctoral fellowship to O.R.
1
14. All new compounds were characterized by H, 13C NMR
References and notes
and IR.
Compound 3c: Mp 85 ꢁC. 1H NMR (CDCl3, 200 MHz): d
2.90 (s, 4H), 3.70 (s, 3H), 6.65 (d, 1H, J = 2.1 Hz), 6.85
(dd, 1H, J = 8.3, 2.1 Hz), 8.05 (d, 1H, J = 8.3 Hz). 13C
NMR (CDCl3, 200 MHz): d 29.5, 46.0, 55.6, 67.8, 112.3,
114.5, 120.2, 132.4, 144.7, 164.4, 183.0. IR cmꢀ1: 1684,
1596, 1494.
1. (a) Bolton, R. In Bromine Compounds: Chemistry and
Applications; Price, D., Iddon, B., Wakefield, B. J., Eds.;
Elsevier: Amsterdam, 1988, p 151; (b) De Kimpe, N.;
´
Verhe, R. In The Chemistry of a-Haloketones, a-Haloal-
dehydes and a-Haloimines; Patai, S., Rappoport, Z., Eds.;
Wiley, 1988.
Compound 3d: Mp 88–90 ꢁC. 1H NMR (CDCl3,
200 MHz): d 2.90 (m, 4H), 4.10 (s, 3H), 7.40 (m, 2H),
7.85 (d, 1H, J = 1 Hz). 13C NMR (CDCl3, 200 MHz): d
28.4, 46.0, 55.5, 67.3, 111.5, 123.0, 128.0, 129.8, 134.6,
158.8, 184.1. IR cmꢀ1: 1498, 1283.
2. For recent advances on a-bromination of carbonyl com-
pounds, see: (a) Tanemura, K.; Suzuki, T.; Nishida, Y.;
Satsumabayashi, K.; Horaguchi, T. Chem. Commun. 2004,
470–471; (b) Lee, J. C.; Park, J. Y.; Yoon, S. Y.; Bae, Y.
H.; Lee, S. J. Tetrahedron Lett. 2004, 45, 191–193; (c) Lee,
J. C.; Bae, Y. H.; Chang, S.-K. Bull. Korean Chem. Soc.
2003, 24, 407–408; (d) Choi, H. Y.; Chi, D. Y. Org. Lett.
2003, 5, 411–413.
3. (a) House, H. O.; McDaniel, W. C. J. Org. Chem. 1977,
42, 2155–2160; (b) Lambert, C.; No¨ll, G.; Schma¨lzlin, E.;
Meerholz, K.; Bra¨uchle, C. Chem. Eur. J. 1998, 4, 2129–
2135; (c) Hatzigrigoriou, E.; Spyroudis, S.; Vargolis, A.
Liebigs Ann. Chem. 1989, 167–170; (d) Plieninger, H.;
Vo¨lkl, A. Chem. Ber. 1976, 109, 2121–2125.
4. Tillu, V. H.; Shinde, P. D.; Bedekar, A. V.; Wakharkar, R.
D. Synth. Commun. 2003, 33, 1399–1403.
5. Spitulnik, M. J. Synthesis 1985, 299–300.
6. Sket, B.; Zupan, M. Synth. Commun. 1989, 19, 2481–
2487.
7. Kosmrlj, J.; Kocevar, M.; Polanc, S. Synth. Commun.
1996, 26, 3583–3592.
8. Satya, P.; Gupta, V.; Gupta, R.; Loupy, A. Tetrahedron
Lett. 2003, 44, 439–442.
Compound 3e: Mp 83 ꢁC. 1H NMR (CDCl3, 200 MHz): d
2.95 (m, 4H), 3.80 (s, 3H), 3.82 (s, 3H), 3.90, (s, 3H), 7.40
(s, 1H). 13C NMR (CDCl3, 200 MHz): d 23.1, 45.6, 56.0,
60.6, 60.8, 67.2, 107.4, 122.2, 129.9, 145.6, 149.8, 152.8,
185.1. IR cmꢀ1: 1691, 1589, 1485.
Compound 3f: 1H NMR (CDCl3, 200 MHz): d 3.30 (m,
4H), 7.50 (t, 1H, J = 8 Hz), 8.00 (dd, 1H, J = 8, 1 Hz), 8.35
(dd, 1H, J = 8, 1 Hz). 13C NMR (CDCl3, 200 MHz): d
30.0, 44.3, 65.6, 124.2, 128.5, 129.0, 129.1, 138.0, 140.9,
183.1. IR cmꢀ1: 1699, 1586, 1559.
Compound 4c: Mp 87 ꢁC. 1H NMR (CDCl3, 200 MHz): d
3.85 (s, 3H), 5.80 (br s, 1H), 6.95 (d, 1H, J = 2 Hz), 7.05
(m, 2H), 7.25 (d, 1H, J = 8.5 Hz), 8.05 (d, 1H, J = 8.5 Hz).
13C NMR (CDCl3, 200 MHz): d 55.2, 101.6, 105.7, 118.4,
119.6, 120.1, 123.9, 128.9, 135.2, 148.2, 158.3. IR cmꢀ1
:
3530, 1622, 1595.
1
Compound 4d: Mp 60 ꢁC. H NMR (CDCl3, 200 MHz):
d 3.95 (s, 3H), 5.35 (br s, 1H), 7.10–7.25 (m, 3H), 7.45
(d, 1H, J = 2 Hz), 7.70 (d, 1H, J = 9 Hz). 13C NMR
(CDCl3, 200 MHz): d 55.3, 100.5, 104.7, 119.5, 121.0,
125.5, 125.8, 128.8, 129.1, 147.0, 157.9. IR cmꢀ1: 3497,
1626, 1591.
9. Bekaert, A.; Barberan, O.; Gervais, M.; Brion, J.-D.
Tetrahedron Lett. 2000, 41, 2903–2905.
10. Bekaert, A.; Barberan, O.; Kaloun, E. B.; Danan, A.;
Brion, J.-D.; Lemoine, P.; Viossat, B. Z. Kristallogr. NCS
2001, 216, 1–2.
1
Compound 4e: Mp 75 ꢁC. H NMR(CDCl3, 200 MHz): d
3.90 (s, 3H), 3.92 (s, 3H), 3.94 (s, 3H), 5.00–5.50 (br s, 1H),
7.15 (s, 1H), 7.20 (d, 1H, J = 9 Hz), 7.40 (d, 1H, J = 9 Hz).
13C NMR (CDCl3, 200 MHz): d 55.8, 60.1, 61.4, 97.2,
105.2, 115.2, 124.5, 126.0, 129.1, 152.1, 152.6, 152.9, 162.2.
IR cmꢀ1: 3497, 1629, 1590.
11. Preparation of MPHT: To a 2 L round bottomed flask,
cooled in an ice bath and equipped with a dropping funnel
and a condenser, were added, successively, 200 mL of
MeOH and 250 mL (one drop per second) of HBr (30% in
acetic acid) while maintaining the internal temperature
between 10 and 15 ꢁC. Elemental bromine, 60 mL, was
then added by the dropping funnel (two drops per second)
Compound 4f: Mp 70–72 ꢁC. 1H NMR (CDCl3,
200 MHz): d 6.05 (s, 1H), 7.30 (dd, 1H, J = 8.5, 8.0 Hz),