10.1002/anie.202012654
Angewandte Chemie International Edition
COMMUNICATION
Niu, P. H. Willoughby, B. P. Woods, Nature 2012, 490, 208-212. d) H.
Yoshida, R. Yoshida, K. Takaki, Angew. Chem. Int. Ed. 2013, 52, 8629-
8632; Angew. Chem. 2013, 125, 8791 - 8794. e) Y. Li, S. Chakrabarty,
C. Mück-Lichtenfeld, A, Studer, Angew. Chem. Int. Ed. 2016, 55, 802-
806; Angew. Chem. 2016, 128, 813-817. f) M. Mesgar, J. Nguyen-Le, O.
Daugulis, J. Am. Chem. Soc. 2018, 140, 13703-13710.
(47-54%). These reactions proceed via TEMPO addition to the
intermediate aryne to give the corresponding adduct aryl radical
that further reacts via a 1,5-HAT. The thus generated translocated
alkyl radical is eventually trapped by the second equivalent of
TEMPO to give compounds of type 6. Considering triflate 5c, the
bisalkoxyamine derived from a 1,6-HAT was not identified. In
analogy, triflate 5d reacted via a 1,4-HAT to the mixed acetal 6d
(47%). Surprisingly, subjecting triflate 5e to the standard reaction
conditions did not provide the expected 1,4-HAT derived acetal;
instead, we isolated the 1,6-HAT/TEMPO trapping product 6e
(15%).
In summary, we have shown that arynes react as in situ generated
radical acceptors with the persistent TEMPO radical. The adduct
aryl radical thus generated can then engage in different typical
radical reactions such as direct TEMPO-trapping, cyclization and
intramolecular hydrogen atom transfer. The rearranged radicals
generated in the latter two cases can finally be trapped by the
persistent TEMPO radical in a highly selective radical/radical
cross coupling. In all cases, bisalkoxyamines result in rather good
yields considering the complexity of these cascades. Aryne
radical chemistry nicely complements existing ionic or transition-
metal based reactions of arynes opening new doors in that timely
research area.
[7]
a) N. Mariet, M. Ibrahim-Ouali, M. Santelli, Tetrahedron Lett. 2002, 43,
5789-5791. b) P. Maurin, M. Ibrahim-Ouali, J.-L. Parrain, M. Santelli, J.
Mol. Struct. (Theochem) 2003, 637, 91-100. c) K. R. Buszek, N. Brown,
D. Luo, Org. Lett. 2009, 11, 201-204. d) S. Yoshida, T. Morita, T. Hosoya,
Chem. Lett. 2016, 45, 726-728. e) Y. Li, C. Mück-Lichtenfeld, A. Studer,
Angew. Chem. Int. Ed. 2016, 55, 14435-14438; Angew. Chem. 2016, 128,
14649-14653. f) S. Umezu, G. dos Passos Gomes, T. Yoshinaga, M.
Sakae, K. Matsumoto, T. Iwata, I. Alabugin, M. Shindo, Angew. Chem. Int.
Ed. 2016, 56, 1298-1302; Angew. Chem. 2017, 129, 1318-1322.
a) D. Peña, S. Escudero, D. Pérez, E. Guitián, L. Castedo, Angew. Chem.
Int. Ed. 1998, 37, 2659-2661; Angew. Chem. 1998, 110, 2804-2806. b) D.
Peña, D. Pérez, E. Guitián, L. Castedo, Org. Lett. 1999, 1, 1555-1557. c)
Y. Sato, T. Tamura, M. Mori, Angew. Chem. Int. Ed. 2004, 43, 2436-2440;
Angew. Chem. 2004, 116, 2490-2494. d) J. Caeiro, D. Peña, A. Cobas,
D. Pérez, E. Guitián, Adv. Synth. Cat. 2006, 348, 2466-2474. e) Z. Qiu, Z.
Xie, Angew. Chem. Int. Ed. 2009, 48, 5729-5732; Angew. Chem. 2009,
121, 5839-5842.
[8]
[9]
a) H. Yoshida, J. Ikadai, M. Shudo, J. Ohshita, A. Kunai, J. Am. Chem.
Soc. 2003, 125, 6638-6639. b) H. Yoshida, K. Tanino, J. Ohshita, A. Kunai,
Angew. Chem. Int. Ed. 2004, 43, 5052-5055; Angew. Chem. 2004, 116,
5162-5165. c) H. Yoshida, S. Kawashima, Y. Takemoto, K. Okada, J.
Ohshita, K. Takaki, Angew. Chem. Int. Ed. 2012, 51, 235-238; Angew.
Chem. 2012, 124, 239-242.
Acknowledgements
[10] a) Z. Liu, X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 15716-
15717. b) T. Gerfaud, L. Neuville, J. Zhu, Angew. Chem. Int. Ed. 2009,
48, 572-577; Angew. Chem. 2009, 121, 580-585. c) X. Peng, W. Wang,
C. Jiang, D. Sun, Z. Xu, C.-H. Tung, Org. Lett. 2014, 16, 5354-5357.
[11] a) T. T. Jayanth, M. Jeganmohan, C.-H. Cheng, Org. Lett. 2005, 7, 2921-
2924. b) J. L. Henderson, A. S. Edwards, M. F. Greaney, J. Am. Chem.
Soc. 2006, 128, 7426-7427. c) W.-J. Yoo, T. V. Q. Nguyen, S. Kobayashi,
Angew. Chem. Int. Ed. 2014, 53, 10213-10217; Angew. Chem. 2014, 126,
10377-10381. d) L. K. B. Garve, D. B. Werz, Org. Lett. 2015, 17, 596-599.
[12] a) P. G. Gassman, G. D. Richmond, J. Am. Chem. Soc. 1970, 92, 2090-
2096. b) V. Usieli, S. Sarel, J. Org. Chem. 1973, 38, 1703-1708. c) K.
Okuma, S. Sonoda, Y. Koga, K. Shioji, J. Chem. Soc., Perkin Trans. 1
1999, 2997-3000. d) U. N. Rao, E. Biehl, J. Org. Chem. 2002, 67, 3409-
3411. e) U. N. Rao, R. Sathunuru, J. A. Maguire, E. Biehl, J. Heterocycl.
Chem. 2004, 41, 13-21. f) S. Yamabe, T. Minato, A. Ishiwata, O.
Irinamihira, T. Machiguchi, J. Org. Chem. 2007, 72, 2832-2841. g) S.
Zhou, G. A. Anderson, B. Mondal, E. Doni, V. Ironmonger, M. Kranz, T.
Tuttle, J. A. Murphy, Chem. Sci. 2014, 5, 476-481. h) Y. Hu, J. Ma, L. Li,
Q. Hu, S. Lv, B. Liu, S. Wang, Chem. Commun. 2017, 53, 1542-1545. i)
X. Yang, G. Chit Tsui, Chem. Sci. 2018, 9, 8871-8875.
We thank the Deutsche Forschungsgemeinschaft (DFG) for
supporting this project.
Keywords: arynes • radicals • heterocycles • cyclization •
TEMPO
[1]
For reviews see: a) P. M. Tadross, B.M. Stoltz., Chem. Rev. 2012, 112,
3550-3577. b) H. H. Wenk, M. Winkler, W. Sander, Angew. Chem. Int.
Ed. 2003, 42, 502-528; Angew. Chem. 2003,115, 518-546. c) R. Sanz,
Org. Prep. Proced. Int. 2008, 40, 215-291. d) C. M. Gampe, E. M.
Carreira, Angew. Chem. Int. Ed. 2012, 51, 3766-3778; Angew. Chem.
2012,124, 3829-3842. e) H. Takikawa, A. Nishii, T. Sakai, K. Suzuki,
Chem. Soc. Rev. 2018, 47, 8030-8056. f) C. Wentrup, Aust. J. Chem.
2010, 63, 979-986. g) X. Jiang and M. Feng, Synthesis 2017, 28, 4414-
4433. h) A. Bhunia, S. Reddy Yetra and A. T. Biju, Chem. Soc. Rev. 2012,
41, 3140-3152.
[2]
D. G. Leopold, A. E. S. Miller, W. C. Lineberger, J. Am. Chem. Soc. 1986,
108, 1379-1384.
[13] a) R. S. Berry, J. Clardy, M. E. Schafer, Tetrahedron Lett. 1965, 6, 1011-
1017. b) D. Leifert, A. Studer, Angew. Chem. Int. Ed. 2020, 59, 74-108;
Angew. Chem. 2020, 132, 74–110.
[3]
[4]
K. J. Cahill, A. Ajaz, R. P. Johnson, Aust. J. Chem. 2010, 63, 1007-1012.
a) Review: S. S. Bhojgude, A. Bhunia, A. T. Biju, Acc. Chem. Res. 2016,
49, 1658-1670. b) F. Sha, X. Huang, Angew. Chem. Int. Ed. 2009, 48,
3458-3461; Angew. Chem. 2009, 121, 3510 –3513. c) S. S. Bhojgude, A.
T. Biju, Angew. Chem. Int. Ed. 2012, 51, 1520-1522; Angew. Chem. 2012,
124, 1550-1552. d) A. Bhunia, T. Roy, P. Pachfule, P. R. Rajamohanan,
A. T. Biju, Angew. Chem. Int. Ed. 2013, 52, 10040-10043; Angew. Chem.
2013,125, 10224-10227. e) A. Bhunia, D. Porwal, R. G. Gonnade, A. T.
Biju, Org. Lett. 2013, 15, 4620-4623. d) K. M. Allan, C. D. Gilmore, B. M.
Stoltz, Angew. Chem. Int. Ed. 2011, 50, 4488-4491; Angew. Chem. 2011,
123, 4580-4583.
[14] a) H. Karoui, F. Le Moigne, O. Ouari, P. Tordo in Stable Radicals:
fundamentals and applied aspects of odd-electron compounds (Editor: R.
G. Hicks), Wiley, Chichester, 2010, pp. 173-230, b) L. Tebben, A. Studer,
Angew. Chem. Int. Ed. 2011, 50, 5034-5068.
[15] S. Coseri. K. U. Ingold, Org. Lett. 2004, 6, 1641-1643.
[16] a) P. H.-Y. Cheong, R. S. Paton, S. M. Bronner, G-Y. J. Im, N. K. Garg,
K. N. Houk, J. Am. Chem. Soc. 2010, 132, 1267-1269. b) J. M. Medina, J.
L. Mackey, N. K. Garg, K. N. Houk, J. Am. Chem. Soc. 2014, 136, 15798-
15805.
[17] a) A. Studer, T. Schulte, Chem. Rec. 2005, 5, 27-35. b) A. Studer, T.
Vogler, Synthesis, 2008, 1979-1993.
[5]
[6]
a) S. Yoshida, Y. Nakamura, K. Uchida, Y. Hazama, T. Hosoya, Org. Lett.
2016, 18, 6212-6215. b) S. Yoshida, K. Shimizu, K. Uchida, Y. Hazama,
K. Igawa, K.Tomooka, T. Hosoya, Chem. Eur. J. 2017, 23, 15332-15335.
c) X. Xiao, T. R. Hoye, J. Am. Chem. Soc. 2019, 141, 9813-9818.
a) U. K. Tambar and Brian M. Stoltz, J. Am. Chem. Soc. 2005, 127, 5340-
5341. b) Z. Liu, R. C. Larock, J. Am. Chem. Soc. 2005, 127, 13112-13113.
D. Peña, D. Pérez, E. Guitián, Angew. Chem. Int. Ed. 2006, 45, 3579-
3581; Angew. Chem. 2006, 118, 3659-3661. c) T. R. Hoye, B. Baire, D.
[18] Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 12, 1211-
1214.
[19] The Knochel method operating with Grignard reagents does not work
since such organometallic species are known to react efficiently with
TEMPO, see ref. 20. I. Sapountzis, W. Lin, M. Fischer, P. Knochel, Angew.
4
This article is protected by copyright. All rights reserved.