molecule. To start with, we selected the (5S,7R,9S,11S)-
diastereoisomer, arbitrarily depicted for 1 in the original
paper, as the target molecule. The 1,3-polyol segment of
lactone 1 suggested several synthetic approaches.6,7 Our
retrosynthetic concept, depicted in Scheme 1, relied exclu-
Scheme 2a
Scheme 1
sively upon asymmetric allylations to create new C-C bonds.
Starting with n-hexadecanal, an iterative three-step sequence
(asymmetric allylation/hydroxyl protection/CdC oxidative
cleavage) was conceived to create a new stereogenic carbon
atom in each cycle. Acylation of the hydroxyl group
generated in the last cycle, followed by ring-closing me-
tathesis,8 should finally afford the desired unsaturated lactone.
In view of our favorable experiences with asymmetric
allylations using Brown’s chiral allylboranes,5d,f we selected
this methodology for the present purposes.9-11 Thus, n-
hexadecanal12 was allowed to react with B-allyl diisopi-
nocampheylborane (allylBIpc2), prepared from allylmagne-
sium bromide and (+)-DIP-Cl (diisopinocampheylboron
chloride).13 This gave homoallyl alcohol 4 as a 96:4
enantiomeric mixture (Scheme 2), as judged from NMR
a Reagents and conditions: (a) allylBIpc2 [from (+)-DIP-Cl and
allylmagnesium bromide], Et2O, 1 h, -100 °C (82%, 96:4 enan-
tiomeric mixture). (b) TBSCl, DMF, imidazole, rt, 18 h, 93%. (c)
O3, CH2Cl2, -78 °C, then PPh3, 3 h, rt. (d) AllylBIpc2 [from (+)-
DIP-Cl], Et2O, -100 °C, (64% overall for the two steps, 93:7
diastereomeric mixture). (e) TBAF, THF, rt, 1.5 h, then chromato-
graphic separation of the two diastereomers, 75% yield of pure 7.
(f) TBSOTf, 2,6-lutidine, rt, 1 h, CH2Cl2., 86%. (g) O3, CH2Cl2,
-78 °C, then PPh3, 3 h, rt. (h) AllylBIpc2 [from (-)-DIP-Cl],
Et2O, 1 h, -100 °C (82:18 diastereomeric mixture), then stereo-
isomer separation, 60% overall. (i) TBSOTf, 2,6-lutidine, rt, 1 h,
CH2Cl2., 94%. (j) O3, CH2Cl2, -78 °C, then PPh3, 3 h, rt. (k)
allylBIpc2 [from (-)-DIP-Cl], Et2O, 1 h, -100 °C (91:9 diaster-
eomeric mixture), then stereoisomer separation, 64% overall. (l)
(E)-Cinnamoyl chloride, NEt3, cat. DMAP, CH2Cl2, rt, 3 h, 76%.
(m) 10% catalyst B, CH2Cl2, ∆, 3 h, 77%. (n) PPTS, aqueous
MeOH, 70 °C, 18 h, 75% (TBS ) tert-butyldimethylsilyl).
(5) (a) Carda, M.; Rodr´ıguez, S.; Segovia, B.; Marco, J. A. J. Org. Chem.
2002, 67, 6560-6563. (b) Carda, M.; Gonza´lez, F.; Castillo, E.; Rodr´ıguez,
S.; Marco, J. A. Eur. J. Org. Chem. 2002, 2649-2655. (c) Murga, J.;
Falomir, E.; Garc´ıa-Fortanet, J.; Carda, M.; Marco, J. A. Org. Lett. 2002,
4, 3447-3449. (d) Falomir, E.; Murga, J.; Carda, M.; Marco, J. A.
Tetrahedron Lett. 2003, 44, 539-541. (e) Carda, M.; Rodr´ıguez, S.; Castillo,
E.; Bellido, A.; D´ıaz-Oltra, S.; Marco, J. A. Tetrahedron 2003, 59, 857-
864. (f) Murga, J.; Garc´ıa-Fortanet, J.; Carda, M.; Marco, J. A. Tetrahedron
Lett. 2003, 44, 1737-1739.
analysis of the Mosher ester. Protection of the hydroxyl group
as the tert-butyldimethylsilyl derivative14 was followed by
ozonolysis of the olefinic bond to yield the intermediate
â-silyloxy aldehyde, which without chromatographic puri-
fication was subjected to asymmetric allylation with the same
reagent as above. This gave homoallyl alcohol 615 with the
desired syn relative configuration of the two oxygen func-
tions.16 Silylation to 815 and oxidative cleavage of the olefinic
bond was followed by asymmetric allylation of the inter-
mediate â-silyloxy aldehyde. The allylating reagent was now
(6) Oishi, T.; Nakata, T. Synthesis 1990, 635-645.
(7) For further, more recent methodologies toward 1,3-polyol segments,
see, for example: (a) Palomo, C.; Aizpurua, J. M.; Urchegi, R.; Garc´ıa, J.
M. J. Org. Chem. 1993, 58, 1646-1648. (b) Schneider, C.; Rehfeuter, M.
Chem. Eur. J. 1999, 5, 2850-2858. (c) Trieselmann, T.; Hoffmann, R. W.
Org. Lett. 2000, 2, 1209-1212. (d) Sarraf, S. T.; Leighton, J. L. Org. Lett.
2000, 2, 3205-3208. (e) Hunter, T. J.; O’Doherty, G. A. Org. Lett. 2001,
3, 2777-2780. See also ref 11b.
(8) (a) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012-3043. (b)
Trnka, T.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29.
(9) Allylation under Keck and related conditions (ref 10) was unsuccessful
here (extremely slow reaction). The use of the Duthaler-Hafner allylation
reagent (ref 11) was discarded because of its very high price.
(10) (a) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc.
1993, 115, 8467-8468. (b) Doucert, H.; Santelli, M. Tetrahedron:
Asymmetry 2000, 11, 4163-4169.
(14) Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis, 3rd ed.; John Wiley and Sons: New York, 1999; pp 127-141.
(15) Chomatographic separation of diastereomers (6 + epimer) proved
to be unfeasible. After desilylation, separation was possible and the pure
diol 7 was then resilylated to 8.
(11) (a) Duthaler, R. O.; Hafner, A. Chem. ReV. 1992, 92, 807-832. (b)
Cossy, J.; BouzBouz, S.; Pradaux, F.; Willis, C.; Bellosta, V. Synlett 2002,
1595-1606.
(12) Freshly prepared by PCC oxidation of n-hexadecanol.
(13) (a) Ramachandran, P. V.; Chen, G.-M.; Brown, H. C. Tetrahedron
Lett. 1997, 2417-2420. (b) For a recent review on asymmetric allylbora-
tions, see: Ramachandran, P. V. Aldrichimica Acta 2002, 35, 23-35.
(16) This was shown by means of 13C NMR and NOE measurements
on the acetonide of diol 7. See: Rychnovsky, S. D.; Rogers, B. N.;
Richardson, T. I. Acc. Chem. Res. 1998, 31, 9-17.
1448
Org. Lett., Vol. 5, No. 9, 2003