82
L. Cai et al. / Journal of Organometallic Chemistry 568 (1998) 77–86
3
4
3JHH=8.3 Hz, JHH=9.8 Hz, JHH=1.1 Hz, 1H, Ar–
129.7; 129.4; 128.8; 128.6; 128.4; 127.3; 126.7; 126.2;
125.9; 125.7; 124.2; 123.4; 123.0; 122.2; 121.5; 118.8;
108.5. GCMS, 475 (35%, M+); 458 (5%, M-NH3+); 283
(45%, M-SO2Q+); 267 (100%, M-NHSO2Q+); 129
(60%, Q+H+). High resolution MS: Found,
475.135898; Calcd, 475.135449530.
H); 6.94 (ddd, 3JHH=7.1 Hz, 3JHH=8.1 Hz, 4JHH=1.0
Hz, 1H, Ar–H); 6.82 (d, JHH=8.8 Hz, 1H, Ar–H);
6.74 (d, JHH=8.8 Hz, 1H, Ar–H); 6.61 (ddd, JHH
7.0 Hz, JHH=8.2 Hz, 1H, Ar–H); 6.03 (d, JHH=8.3
Hz, 1H, Ar–H); 3.80 (brs, 2H, NH2). 13C{1H}-
(DMSO-d6 at 300 MHz), d, 185.3; 151.1; 145.1; 142.3;
137.0; 136.5; 135.2; 134.9; 134.4; 133.2; 132.0; 130.6;
3
3
3
=
3
3
4.3. Ruthenium complex 6
Ligand 5 (500 mg, 1.052 mmol) and [RuCl2(p6-
cumene)]2 (354 mg, 0.579 mmol) were dissolved in
isopropanol. Triethylamine (3 mmol) was added. The
mixture was refluxed at 80°C for 1 h or until the
starting material disappeared on TLC plate. The sol-
vent was removed, and the solid was washed with
water, to afford product, 738 mg. Recrystallization
from methanol/ether gave the product (660 mg).
Table 3
˚
Bond lengths (A) and angles (°) for 5
S(1)–O(2)
S(1)–N(2)
N(1)–C(2)
C(1)–C(2)
C(1)ꢁC(11)
C(3)ꢁC(4)
C(5)ꢁC(6)
C(6)ꢁC(7)
C(8)ꢁC(9)
C(11)ꢁC(12)
C(12)ꢁC(13)
C(14)ꢁC(20)
C(15)ꢁC(20)
C(17)ꢁC(18)
C(19)ꢁC(20)
N(3)ꢁC(29)
C(23)ꢁC(24)
C(25)ꢁC(26)
C(26)ꢁC(27)
C(28)ꢁC(29)
1.433(3) S(1)–O(1)
1.434(2)
1.767(4)
1.432(4)
1.429(5)
1.416(5)
1.421(6)
1.406(6)
1.369(5)
1.422(5)
1.437(5)
1.355(5)
1.362(5)
1.407(5)
1.417(5)
1.318(5)
1.404(5)
1.406(5)
1.406(5)
1.363(5)
1.418(5)
1.639(3) S(1)–C(28)
1.376(4) N(2)–C(12)
1.383(5) C(1)ꢁC(9)
1.490(5) C(2)ꢁC(3)
1.348(5) C(4)ꢁC(10)
1.366(6) C(5)ꢁC(10)
1.400(6) C(7)ꢁC(8)
1.415(5 C(9)ꢁC(10)
1.376(5) C(11)ꢁC(19)
1.415(5) C(13)ꢁC(14)
1.413(5) C(15)ꢁC(16)
1.410(5) C(16)ꢁC(17)
1.372(5) C(18)ꢁC(19)
1.423(5) N(3)ꢁC(22)
1.365(4) C(22)ꢁC(23)
1.353(5) C(24)ꢁC(30)
1.361(5) C(25)ꢁC(30)
1.401(5) C(27)ꢁC(28)
1.418(5) C(29)ꢁC(30)
Alternatively, after the reaction was complete, the
solvent was removed under vacuum. The solid was
completely dissolved in CH3CN. After a few minutes,
pure yellow product precipitated out. Yield 92%.
3
1H-NMR (CD3OD at 400 MHz), l, 10.31 (d, JHH
=
3
5.4 Hz, 1H, Ar–H); 8.61 (d, JHH=7.5 Hz, 1H, Ar–
H); 8.15 (d, 3JHH=9.0 Hz, 1H, Ar–H); 8.06 (d,
3JHH=8.4 Hz, 1H, Ar–H); 7.97 (d, JHH=8.1 Hz, 1H,
3
3
3
Ar–H); 7.84 (dd, JHH=5.4 Hz, JHH=8.4 Hz, 1H,
Ar–H); 7.68 (d, 3JHH=8.4 Hz, 1H, Ar–H); 7.42 (t,
3JHH=7.5 Hz, 1H, Ar–H); 7.29 (d, JHH=7.5 Hz, 2H,
3
Ar–H); 7.18 (t, 3JHH=7.2 Hz, 1H, Ar–H); 7.11 (t,
3JHH=7.6 Hz, 1H, Ar–H); 7.02 (t, JHH=7.6 Hz, 1H,
3
N(1S)ꢁC(1S)
1.068(6) C(1S)ꢁC(2S)
1.398(7)
108.6(2)
3
O(2)ꢁS(1)ꢁO(1)
O(1)ꢁS(1)ꢁN(2)
O(1)ꢁS(1)ꢁC(28)
C(12)ꢁN(2)ꢁS(1)
C(2)ꢁC(1)ꢁC(11)
N(1)ꢁC(2)ꢁC(1)
C(1)ꢁC(2)ꢁC(3)
C(3)ꢁC(4)ꢁC(10)
C(5)ꢁC(6)ꢁC(7)
C(7)ꢁC(8)ꢁC(9)
C(8)ꢁC(9)ꢁC(1)
C(5)ꢁC(10)ꢁC(4)
C(4)ꢁC(10)ꢁC(9)
C(12)ꢁC(11)ꢁC(1)
118.7(2)
O(2)ꢁS(1)ꢁN(2)
O(2)ꢁS(1)ꢁC(28)
N(2)ꢁS(1)ꢁC(28)
C(2)ꢁC(1)ꢁC(9)
C(9)ꢁC(1)ꢁC(11)
N(1)ꢁC(2)ꢁC(3)
C(4)ꢁC(3)ꢁC(2)
C(6)ꢁC(5)ꢁC(10)
C(8)ꢁC(7)ꢁC(6)
C(8)ꢁC(9)ꢁC(10)
C(10)ꢁC(9)ꢁC(1)
C(5)ꢁC(10)ꢁC(9)
Ar–H); 6.79 (t, JHH=7.6 Hz, 1H, Ar–H); 6.63 (dd,
3JHH=3.9 Hz, 3JHH=8.4 Hz, 3H, Ar–H); 6.24 (d,
106.3(2)
108.8(2)
124.0(2)
120.7(3)
121.7(3)
119.9(3)
121.7(4)
119.8(4)
121.5(4)
122.7(3)
122.5(4)
118.0(4)
121.9(3)
107.7(2)
106.0(2)
119.7(3)
119.6(3)
118.4(3)
120.9(4)
121.2(4)
120.3(4)
117.6(3)
119.8(3)
119.5(4)
3JHH=6.0 Hz, 1H, Ar–H); 6.15 (d, JHH=3.6 Hz, 1H,
3
Ar–H); 6.14 (d, 3JHH=8.4 Hz, 1H, Ar-H); 6.03 (d,
3JHH=6.0 Hz, 1H, Ar–H); 5.87 (d, JHH=6.0 Hz, 1H,
3
3
Ar–H); 2.81 (hepta, JHH=6.9 Hz, 1H, CH); 2.02 (s,
3H, CH3); 1.06 (d, JHH=6.9 Hz, 3H, CH3); 0.89 (d,
3
3JHH=6.9 Hz, 3H, CH3). 13C{1H}- (DMSO-d6 at 300
MHz), l, 163.9; 144.6; 143.6; 142.9; 137.4; 136.3; 134.9;
134.0; 133.8; 133.6; 132.6; 132.5; 132.1; 131.2; 131.1;
129.3; 128.9; 128.7; 128.2; 127.5; 127.4; 127.1; 126.8;
126.7; 126.5; 126.1; 124.5; 118.7; 118.2; 108.5; 96.3;
96.1; 92.3; 89.6; 85.1; 31.7 (1C, CH); 22.9 (1C, CH3);
21.5 (1C, CH3); 17.7 (1C, CH3). FAB, 710 (22%, M-
Cl+); 512 (100%, M-Ru(cumene)+H+); 385 (77%,
M-Ru(cumene)-Q+H+). High resolution FAB for
C39H34N3O2SRu, the cationic portion of the complex:
Found, 710.142400; Calcd, 710.141522. Elemental anal-
ysis of C39H34N3O2SRuCl: Found, C, 61.89; H, 4.56; N,
5.82; Calcd, C, 62.87; H, 4.57; N, 5.63.
C(12)ꢁC(11)ꢁC(19) 118.5(3)
C(19)ꢁC(11)ꢁC(1)
C(11)ꢁC(12)ꢁN(2)
119.6(3)
119.5(3)
C(11)ꢁC(12)ꢁC(13) 121.3(3)
C(13)ꢁC(12)ꢁN(2) 119.2(3)
C(14)ꢁC(13)ꢁC(12) 120.1(3)
C(16)ꢁC(15)ꢁC(20) 120.9(4)
C(18)ꢁC(17)ꢁC(16) 120.7(4)
C(18)ꢁC(19)ꢁC(20) 118.0(3)
C(20)ꢁC(19)ꢁC(11) 120.1(3)
C(15)ꢁC(20)ꢁC(19) 119.7(3)
C(13)ꢁC(14)ꢁC(20) 121.9(4)
C(15)ꢁC(16)ꢁC(17) 119.9(4)
C(17)ꢁC(18)ꢁC(19) 120.8(4)
C(18)ꢁC(19)ꢁC(11) 121.9(3)
C(15)ꢁC(20)ꢁC(14) 122.3(4)
C(14)ꢁC(20)ꢁC(19) 118.0(3)
C(22)ꢁN(3)ꢁC(29)
117.0(3)
N(3)ꢁC(22)ꢁC(23)
124.1(4)
C(24)ꢁC(23)ꢁC(22) 119.2(4)
C(26)ꢁC(25)ꢁC(30) 121.2(4)
C(28)ꢁC(27)ꢁC(26) 120.3(4)
C(23)ꢁC(24)ꢁC(30) 119.5(4)
C(25)ꢁC(26)ꢁC(27) 120.0(4)
C(27)ꢁC(28)ꢁC(29) 121.3(3)
C(29)ꢁC(28)ꢁS(1)
N(3)ꢁC(29)ꢁC(30)
C(25)ꢁC(30)ꢁC(24) 123.2(4)
C(24)ꢁC(30)ꢁC(29) 117.4(4)
C(27)ꢁC(28)ꢁS(1)
N(3)ꢁC(29)ꢁC(28)
C(28)ꢁC(29)ꢁC(30) 117.8(3)
C(25)ꢁC(30)ꢁC(29) 119.4(4)
N(1S)ꢁC(1S)ꢁC(2S) 176.4(8)
119.0(3)
119.4(3)
4.4. Ruthenium complex 7
119.7(3)
122.7(3)
Ruthenium complex 6 was dissolved in acetone. Then
AgPF6 (one equivalent) in acetone was added. A white
precipitate came out immediately. After filtering the