Journal of the American Chemical Society
Communication
silicalite. From these results, we can stress that a mesospace that
is at least larger than the microporous space obtained in zeolites
is needed to promote such a reaction on a basic surface. More
bulky substrates are normally used in most of the reactions
required for organosynthesis using basic catalysts; thus, we can
conclude the potential application seen in our newly developed
samples.
In summary, we have successfully synthesized a new solid-
base catalyst, methylated nitrogen-substituted SBA-15, by a very
simple method and demonstrated Knoevenagel condensation
using benzaldehyde and diethyl malonate with this catalyst. The
results indicate that the methyl group enhances the basicity of
the amine part and enables this Knoevenagel condensation,
which is impossible using known conventional solid-base
catalysts.
ASSOCIATED CONTENT
Supporting Information
■
*
S
XRD patterns, N and C contents, and catalytic performance of
AUTHOR INFORMATION
REFERENCES
■
(
1) (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.;
Beck, J. S. Nature 1992, 359, 710−712. (b) Bagshaw, S. A.; Prouzet, E.;
Pinnavaia, T. J. Science 1995, 269, 1242−1244. (c) Zhao, D.; Feng, J.;
Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G.
D. Science 1998, 279, 548−552. (d) Beck, J. S.; Vartuli, J. C.; Roth, W.
J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.;
Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.;
Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834−10843. (e) Zhao,
D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc.
1
998, 120, 6024−6036.
2) (a) Corma, A. Chem. Rev. 1997, 97, 2373−2419. (b) Soler-Illia, J.
G.; Sanchez, C.; Lebeau, B.; Patarin, J. Chem. Rev. 2002, 102, 4093−
138. (c) Busca, G. Chem. Rev. 2007, 107, 5366−5410.
3) (a) Lednor, P. W. Catal. Today 1992, 15, 243−261. (b) Xia, Y.;
(
4
(
Mokaya, R. Angew. Chem., Int. Ed. 2003, 42, 2639−2644. (c) Xia, Y.;
Mokaya, R. J. Mater. Chem. 2004, 14, 2507−2515. (d) Chino, N.;
Okubo, T. Microporous Mesoporous Mater. 2005, 87, 15−22. (e) Ernst,
E.; Hartmann, M.; Sauerbeck, S.; Bongers, T. Appl. Catal., A 2000,
2
00, 117−123.
4) (a) Hattori, H. Chem. Rev. 1995, 95, 537−558. (b) Ono, Y.; Baba,
T. Catalysis 2000, 15, 1−39. (c) Busca, G. Chem. Rev. 2010, 110,
217−2249.
5) Hasegawa, T.; Krishnan, C. K.; Ogura, M. Microporous
Mesoporous Mater. 2010, 132, 290−295.
6) (a) Busca, G.; Lorenzelli, V.; Porcile, G.; Baraton, M. I.; Quintard,
P.; Marchand, R. Mater. Chem. Phys. 1986, 14, 123−140.
b) Katabathini, N.; Martin, H.; Helwig, H. T.; Stefan, E.
(
2
(
(
(
Microporous Mesoporous Mater. 2006, 90, 377−383. (c) Hruby, S. L.;
Shanks, B. H. J. Catal. 2009, 263, 181−188.
(
7) (a) Macquarrie, D. J.; Jackson, D. B. J. Chem. Soc., Chem.
Commun. 1997, 1781−1782. (b) Corma, A.; Iborra, S.; Rodriguez, I.;
Sanchez, F. J. Catal. 2002, 211, 208−215. (c) Bass, J. D.; Solovyov, A.;
Pascall, A. J.; Katz, A. J. Am. Chem. Soc. 2006, 128, 3737−3747.
2
0032
dx.doi.org/10.1021/ja2070522 | J. Am. Chem.Soc. 2011, 133, 20030−20032