6094
W. Xue et al. / Tetrahedron Letters 48 (2007) 6092–6095
O
Na
O
Na PO S
3
3
O
methanol
O
-
+
P
O
Br
Na
S
SH
Br
ONa
Scheme 1. Synthesis of aldosyl mercaptans.
the formation of 1,2-cis-a-glycosides or any undesired
byproducts. For general pyranosides, assignment of
the anomeric configuration is based on the JH-1,H-2
coupling constants (a-isomers, ꢀ2 Hz; b-isomers, 8–
10.5 Hz). Although there is no anomeric proton in a-sia-
lyl thiol, the anomeric configuration was inferred on
the basis of the JC-2,H-3ax coupling constants (a-isomer,
ꢀ8 Hz).25
O-benzoyl-b-D-thiolactose): 1H NMR 2.09 (d, 1H,
J1,SH = 9.9, SH), 4.69 (dd, 1H, J1,2 = 10.1, H-1), 5.48
(dd, 1H, J1,2 = 10.1 Hz, J2,3 = 3.4 Hz, H-2), 6.17
0
0
(t, 1H, J = 9.6 Hz, H-3), 5.55 (dd, 1H, J3 ;4 ¼ 7:2 Hz,
J2 ;3 ¼ 3:5 Hz, H-30), 4.25 (dd, 1H, J3,4 = 9.6 Hz,
J4,5 = 10.0 Hz, H-4), 5.69–5.78 (m, 2H, H-20, H-40),
3.86–3.99 (m, 2H, H-5, H-50), 4.44–4.58 (m, 2H,
H-6), d = 3.70–3.77 (m, 2H, H-60), 4.82 (d, 1H,
0
0
J1 ;2 ¼ 7:9 Hz, H-10), 7.07–8.04 (m, 35H, 7Ph). 13C
NMR 61.9(C-6), 61.4(C-60), 76.9(C-5), 70.8(C-50),
75.6(C-4), 66.9(C-40), 73.3(C-3), 71.4(C-30), 73.6(C-2),
69.5(C-20), 80.1(C-1), 101.4(C-10), 129.1–133.3 (7 · Ph),
163.4–166.8 (C@O). HRESIMS (m/z): Calcd for
C61H50O17SNa [M+Na]+: 1109.7984; found, 1109.7968.
0
0
In conclusion, we have demonstrated that commercially
available sodium thiophosphate is a novel reagent for
stereoselective thiolation of aldosyl halides to produce
1,2-trans-1-thioaldoses while leaving protecting groups
on sugar residues intact. Excellent yields, simple work-
up and mild reaction conditions make this method an
attractive addition to the present methodologies.
Acknowledgements
Typical experimental procedure: Sodium thiophosphate
dodecahydrate (3 mmol) was added to a solution of
D-aldosyl halides (2 mmol) in methanol (20 ml) under
argon. The resulting mixture was stirred at room tem-
perature for a period of 4–7 h until TLC indicated com-
plete conversion of halides. The reaction mixture was
poured into water and the products were extracted three
times with CH2Cl2. The combined extracts were washed
with brine, dried over Na2SO4, rotary evaporated and
the residue was recrystallized or purified by silica gel
column chromatography. Spectral data for selected
compounds: Compound b (2,3,4,6-tetra-O-pivaloyl-b-
The work was supported by State Key Laboratory of
Pharmaceutical Biotechnology in Nanjing University.
The authors wish to thank the reviewers for instructive
suggestions.
References and notes
1. Birk, R.; Ikan, A.; Bravdo, B.; Braun, S.; Shoseyov, O.
Appl. Biochem. Biotechnol. 1997, 66, 25–38.
2. Sears, P.; Wong, C. H. Cell. Mol. Life Sci. 1998, 54, 223–
252.
3. Varki, A. Glycobiology 1993, 3, 97–130.
4. Gabius, H. J. Biochim. Biophys. Acta 1991, 1071, 1–18.
5. Bertozzi1, C. R.; Kiessling, L. L. Science 2001, 291, 2357–
2364.
1
D-hiogalactopyranose): H NMR 1.09 (s, 9H, CMe3),
1.12 (s, 9H, CMe3), 1.16 (s, 9H, CMe3), 1.21 (s, 9H,
CMe3), 2.37 (d, 1H, J1,SH = 10.0, SH), 4.63 (d, 1H,
J1,2 = 9.7, H-1), 4.98 (dd, 1H, J1,2 = 9.7, J2,3 = 2.3, H-
2), 5.27 (dd, 1H, J3,4 = 9.4, J2,3 = 2.3, H-3), 5.15 (dd,
1H, J4,5 = 1.3, J3,4 = 9.4, H-4), 3.72 (ddd, 1H,
6. Wardell, J. L. In The Chemistry of the Thiol Group; Patai,
S., Ed.; Wiley: London, 1974; pp 1–479.
7. Pinehart, A.; Dallaire, C.; Bierbeek, A. V.; Gingras, M.
Tetrahedron Lett. 1999, 40, 5479–5482.
8. Pachamuthu, K.; Schmidt, R. R. Chem. Rev. 2006, 106,
160–187.
9. Ponpipom, M. M.; Hagmann, W. K.; Grady, L. A.;
Jackson, J. J.; Wood, D. D.; Zweerink, H. J. J. Med.
Chem. 1990, 33, 861–867.
10. Herczegh, P.; Kovacs-Kulyassa, A.; Erdosi, G.; Kovacs,
L.; Menyhart, T.; Szabo Pal, T.; Kornyei, J. Carbohydr.
Lett. 1998, 3, 59–64.
11. Fugedi, P.; Garegg, J.; Lonn, H.; Norberg, T. Glycocon-
jugate J. 1987, 4, 97–108.
12. Taylor, R. J. K.; McAllister, G. D.; Franck, R. W.
Carbohydr. Res. 2006, 341, 298–1311.
13. Knapp, S.; Darout, E.; Amorelli, B. J. Org. Chem. 2006,
71, 1380–1389.
14. Davis, B. G.; Ward, S. J.; Rendle, P. M. Chem. Commun.
2001, 189–190.
0
J4,5 = 1.3, J5;6 ¼ 4:9 and J5,6 = 1.9, H-5), 4.17 (dd,
0
1H, J5,6 = 1.9, J6;6 ¼ 12:3, H-6) and 4.08 (dd, 1H,
J5;6 ¼ 4:9, J6;6 ¼ 12:3, H-60). 13C NMR 61.8(C-1),
67.5(C-2), 73.0(C-3), 73.5(C-4), 76.8(C-5), 79.0(C-6),
176.3, 176.8, 177.1 and 178.0 (C@O). HRESIMS (m/z):
Calcd for C26H44O9SNa [M+Na]+: 555.2741; found,
555.2750. Compound e (2,3-di-O-acetyl-4,6-isopropylid-
ene-b-D-thioglucopyranose): 1H NMR 2.30 (d, 1H,
J1,SH = 9.9 Hz, SH), 4.58 (d, J1,2 = 8.1, H-1), 4.72 (dd,
J2,3 = 9.4, J1,2 = 8.1, H-2), 5.10 (dd, 1H, J2,3 = 9.4 Hz,
J3,4 = 9.7 Hz, H-3), 3.42 (dd, J3,4 = 9.7, J4,5 = 9.9, H-
4), 3.42 (ddd, 1H, J4,5 = 10.0 Hz, J5,6 = 2.4 Hz,
0
0
0
J5;6 ¼ 4:3 Hz, H-5), 3.51 (dd, 1H, J5,6 = 2.4 Hz,
0
0
J6;6 ¼ 10:5 Hz, H-6), 4.10 (dd, 1H, J5;6 ¼ 4:3,
J6;6 ¼ 10:5 Hz, H-60), 1.71(CH3CO), 1.69(CH3CO),
0
1.31(CCH3), 1.14(CCH3). 13C NMR 79.6(C-1),
72.9(C-2), 69.6(C-3), 71.8(C-4), 77.7(C-5), 62.8(C-6),
19.8(CH3CO), 20.5(CH3CO), 28.2(Me2C). HRESIMS
(m/z): Calcd for C13H19O7SNa [M+Na]+: 341.8354;
found, 341.8343. Compound h (2,3,6,20,30,40,60-hepta-
15. Chayajarus, K.; Fairbanks, A. J. Tetrahedron Lett. 2006,
47, 3517–3520.