ARTICLES
tentatively assigned to be the azaallyl radical and imino-ketyl radical 22. Ankner, T., Cosner, C. C. & Helquist, P. Palladium- and nickel-catalyzed
alkenylation of enolates. Chem. Eur. J. 19, 1858–1871 (2013).
anion species. The detection of radicals is consistent with the
unusual azaallyl radical addition mechanism with aliphatic vinyl
bromides. For styryl bromides, a radical clock-bearing substrate
2
3. Grigalunas, M., Ankner, T., Norrby, P. O., Wiest, O. & Helquist, P.
Palladium-catalyzed alkenylation of ketone enolates under mild conditions.
Org. Lett. 16, 3970–3973 (2014).
reacted without ring opening, but with loss of the double-bond 24. Hardegger, L. A., Habegger, J. & Donohoe, T. J. Modular synthesis of
highly substituted pyridines via enolate alpha-alkenylation. Org. Lett. 17,
stereochemistry. This observation disfavours the radical mechanism
3222–3225 (2015).
and is better explained by an anionic addition/elimination mechan-
ism. Further studies are under way to broaden this class of reactions
using ketimine derivatives in the absence of added transition-metal
catalyst and to definitively assign the structures of the radical species
observed by EPR.
2
2
5. Padilla-Salinas, R., Walvoord, R. R., Tcyrulnikov, S. & Kozlowski, M. C.
Nitroethylation of vinyl triflates and bromides. Org. Lett. 15, 3966–3969 (2013).
6. Piers, E. & Marais, P. C. A new five-membered ring annulation method based on
palladium(0)-catalyzed intramolecular coupling of vinyl iodide and enolate
anion functions. J. Org. Chem. 55, 3454–3455 (1990).
7. Solé, D., Peidró, E. & Bonjoch, J. Palladium-catalyzed intramolecular coupling of
vinyl halides and ketone enolates. synthesis of bridged azabicyclic compounds.
Org. Lett. 2, 2225–2228 (2000).
2
Data availability. All relevant data are included with the
manuscript, in the Supplementary Information, and are available 28. Yang, X., Kim, B. S., Li, M. & Walsh, P. J. Palladium-catalyzed selective
from the corresponding authors on reasonable request.
alpha-alkenylation of pyridylmethyl ethers with vinyl bromides. Org. Lett. 18,
371–2374 (2016).
2
2
3
3
9. Niwa, T., Suehiro, T., Yorimitsu, H. & Oshima, K. Carbon–carbon bond
formations at the benzylic positions of N-benzylxanthone imines and
N-benzyldi-1-naphthyl ketone imine. Tetrahedron 65, 5125–5131 (2009).
0. Tang, S., Park, J. Y., Yeagley, A. A., Sabat, M. & Chruma, J. J. Decarboxylative
generation of 2-azaallyl anions: 2-iminoalcohols via a decarboxylative
Erlenmeyer reaction. Org. Lett. 17, 2042–2045 (2015).
1. Yeagley, A. A., Lowder, M. A. & Chruma, J. J. Tandem C–C bond-forming
processes: interception of the Pd-catalyzed decarboxylative allylation of
allyl diphenylglycinate imines with activated olefins. Org. Lett. 11,
Received 22 April 2016; accepted 1 March 2017;
published online 17 April 2017
References
1.
2.
3.
4.
Negishi, E. Magical power of transition metals: past, present, and future (Nobel
Lecture). Angew. Chem. Int. Ed. 50, 6738–6764 (2011).
Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct
C–C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).
Sun, C. L. & Shi, Z. J. Transition-metal-free coupling reactions. Chem. Rev. 114,
4022–4025 (2009).
9
219–9280 (2014).
3
3
3
2. Kauffmann, T., Berger, D., Scheerer, B. & Woltermann, A. Anionic 3+2
cycloaddition of a 1,2-diazaallyllithium compound. Angew. Chem. Int. Ed. 9,
Petranyi, G., Ryder, N. & Stutz, A. Allylamine derivatives: new class of
synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224,
961–962 (1970).
1
239–1241 (1984).
3. Pandiancherri, S. & Lupton, D. W. Preparation of 2-azaallyl anions and imines
5.
6.
7.
Roggen, M. & Carreira, E. M. Stereospecific substitution of allylic alcohols to give
optically active primary allylic amines: unique reactivity of a (P,alkene)Ir
complex modulated by iodide. J. Am. Chem. Soc. 132, 11917–11919 (2010).
Yamashita, Y., Gopalarathnam, A. & Hartwig, J. F. Iridium-catalyzed,
asymmetric amination of allylic alcohols activated by Lewis acids. J. Am. Chem.
Soc. 129, 7508–7509 (2007).
Patel, S. J. & Jamison, T. F. Asymmetric catalytic coupling of organoboranes,
alkynes, and imines with a removable (trialkylsilyloxy)ethyl group—direct access
to enantiomerically pure primary allylic amines. Angew. Chem. Int. Ed. 43,
from N-chloroamines and their cycloaddition and allylation. Tetrahedron Lett.
52, 671–674 (2011).
4. Taber, D. F., Sahli, A., Yu, H. & Meagley, R. P. Efficient intramolecular C–H
insertion by an alkylidene carbene generated from a vinyl chloride. J. Org. Chem.
6
0, 6571–6573 (1995).
5. Taber, D. F., Sikkander, M. I. & Storck, P. H. Enantioselective synthesis of
+)-majusculone. J. Org. Chem. 72, 4098–4101 (2007).
6. Bernasconi, C. F. & Rappoport, Z. Recent advances in our mechanistic
understanding of S V reactions. Acc. Chem. Res. 42, 993–1003 (2009).
3
3
3
3
3
(
N
3
941–3944 (2004).
7. Rappoport, Z. Nucleophilic vinylic substitution. A single- or a multi-step
process? Acc. Chem. Res. 14, 7–15 (1981).
8
.
.
Shi, X., Kiesman, W. F., Levina, A. & Xin, Z. Catalytic asymmetric petasis
reactions of vinylboronates. J. Org. Chem. 78, 9415–9423 (2013).
Overman, L. E. A general method for the synthesis of amines by the
rearrangement of allylic trichloroacetimidates. 1,3 Transposition of alcohol and
amine functions. J. Am. Chem. Soc. 98, 2901–2910 (1976).
8. Rappoport, Z. The rapid steps in nucleophilic vinylic addition–elimination
substitution. Recent developments. Acc. Chem. Res. 25, 474–479 (1992).
9. Bach, R. D., Baboul, A. G. & Schlegel, H. B. Inversion versus retention of
configuration for nucleophilic substitution at vinylic carbon. J. Am. Chem. Soc.
9
1
0. Ngai, M.-Y., Barchuk, A. & Krische, M. J. Enantioselective iridium-catalyzed
imine vinylation: optically enriched allylic amines via alkyne–imine reductive
coupling mediated by hydrogen. J. Am. Chem. Soc. 129, 12644–12645 (2007).
1. Skucas, E., Kong, J. R. & Krische, M. J. Enantioselective reductive coupling of
acetylene to N-arylsulfonyl imines via rhodium catalyzed C–C bond-forming
hydrogenation: (Z)-dienyl allylic amines. J. Am. Chem. Soc. 129,
123, 5787–5793 (2001).
40. Castro, E. A., Gazitua, M. & Santos, J. G. Kinetics and mechanism of the
anilinolysis of aryl 4-nitrophenyl carbonates in aqueous ethanol. J. Org. Chem.
1
70, 8088–8092 (2005).
4
4
4
1. Castro, E. A., Ramos, M. & Santos, J. G. Concerted pyridinolysis of
aryl 2,4,6-trinitrophenyl carbonates. J. Org. Chem. 74, 6374–6377 (2009).
2. Williams, A. Concerted mechanisms of acyl group transfer reactions in solution.
Acc. Chem. Res. 22, 387–392 (1989).
7
242–7243 (2007).
1
1
1
2. Li, M., Berritt, S. & Walsh, P. J. Palladium-catalyzed regioselective arylation
of 1,1,3-triaryl-2-azaallyl anions with aryl chlorides. Org. Lett. 16,
3. Fernandez, I., Bickelhaupt, F. M. & Uggerud, E. Reactivity in nucleophilic vinylic
4
312–4315 (2014).
substitution (S
N N π N σ
V): S V versus S V mechanistic dichotomy. J. Org. Chem. 78,
3. Li, M. et al. Palladium-catalyzed C–H arylation of α,β-unsaturated imines:
catalyst-controlled synthesis of enamine and allylic amine derivatives.
Angew. Chem. Int. Ed. 128, 2875–2879 (2016).
4. Li, M., Yucel, B., Adrio, J., Bellomo, A. & Walsh, P. J. Synthesis of
diarylmethylamines via palladium-catalyzed regioselective arylation of
8574–8584 (2013).
44. Baum, A. A. & Karnischky, L. A. Photochemical formation of oxazolidines from
aryl ketones and aliphatic imines. J. Am. Chem. Soc. 95, 3072–3074 (1973).
45. Dannenberg, J. J. & Tanaka, K. Theoretical studies of radical recombination
reactions. 1. Allyl and azaallyl radicals. J. Am. Chem. Soc. 107, 671–674 (1985).
46. Malassa, A., Agthe, C., Görls, H., Friedrich, M. & Westerhausen, M.
Deprotonation and dehydrogenation of di(2-pyridylmethyl)amine with
1
,1,3-triaryl-2-azaallyl anions. Chem. Sci. 5, 2383–2391 (2014).
1
1
1
5. Li, M. et al. Umpolung synthesis of diarylmethylamines via palladium-catalyzed
arylation of N-benzyl aldimines. Adv. Synth. Catal. 358, 1910–1915 (2016).
6. Wu, Y., Hu, L., Li, Z. & Deng, L. Catalytic asymmetric Umpolung reactions of
imines. Nature 523, 445–450 (2015).
7. Burger, E. C. & Tunge, J. A. Synthesis of homoallylic amines via the palladium-
catalyzed decarboxylative coupling of amino acid derivatives. J. Am. Chem. Soc.
M[N(SiMe
3 2 2 6 2 3 2
) ] (M=Mn, Fe, Co, Zn) and Fe(C H -2,4,6-Me ) . J. Organomet.
Chem. 695, 1641–1650 (2010).
4
7. Pallagi, I., Toró, A. & Horváth, G. Mechanism of the Gibbs reaction. Part 4.1
Indophenol formation via N-chlorobenzoquinone imine radical anions. The
Aza-SRN2 chain reaction mechanism. Chain initiation with 1,4-benzoquinones
and cyanide ion. J. Org. Chem. 64, 6530–6540 (1999).
1
28, 10002–10003 (2006).
1
1
2
2
8. Fields, W. H. & Chruma, J. J. Palladium-catalyzed decarboxylative benzylation of
diphenylglycinate imines. Org. Lett. 12, 316–319 (2009).
9. Niwa, T., Yorimitsu, H. & Oshima, K. Palladium-catalyzed benzylic arylation of
N-benzylxanthone imine. Org. Lett. 10, 4689–4691 (2008).
0. Zhu, Y. & Buchwald, S. L. Ligand-controlled asymmetric arylation of aliphatic
α-amino anion equivalents. J. Am. Chem. Soc. 136, 4500–4503 (2014).
1. Liu, Y. E. et al. Enzyme-inspired axially chiral pyridoxamines armed with a
cooperative lateral amine chain for enantioselective biomimetic transamination.
J. Am. Chem. Soc. 138, 10730–10733 (2016).
4
8. Giese, B. The stereoselectivity of intermolecular free radical reactions
[
New Synthetic Methods (78)]. Angew. Chem. Int. Ed. 28, 969–980 (1989).
Acknowledgements
The authors acknowledge the National Science Foundation (CHE-1464744 to P.J.W. and
CHE-1464778 to M.C.K.) and the National Institutes of Health (GM-104349 to P.J.W. and
GM-087605 to M.C.K.) for financial support. J.A. acknowledges support from Ministerio
de Educación, Cultura y Deporte, Subprograma Estatal de Movilidad, Salvador de
2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
7
©