N. M. A. J. Kriek et al. / Tetrahedron 59 (2003) 1589–1597
1597
USA 1978, 75, 4868–4872. (c) Kitamura, N.; Semler, B. L.;
Rothberg, P. G.; Larsen, G. R.; Adler, C. J.; Dorner, A. J.;
Emini, E. A.; Hanecak, R.; Lee, J. J.; van der Werf, S.;
Anderson, C. W.; Wimmer, E. Nature 1981, 291, 547–553.
3. Agol, V. I.; Paul, A. V.; Wimmer, E. Virus Res. 1996, 62,
129–147.
7.75 (m, 2H, Harom Fmoc), 7.61 (m, 2H, Harom Fmoc), 7.48-
7.07 (br m, 9H, Harom Fmoc, Ph; H-6 U), 6.11 (m, 2H, H-10
U, NH Ser), 5.73 (d0, 1H, J¼8.04 Hz, H-5 U), 5.40, 5.29
(2£m, 2H, H-20, H-3 U), 4.65-3.88 (br m, 9H, CH, OCH2
Fmoc; H-40, H-50a, H-50b U; aCH, bCH2 Ser), 2.08 (s,
6H, 2£CH3 Ac). ESI-MS: m/z¼828.3 [MþH]þ, 850.1
[MþNa]þ.
4. Paul, A. V.; van Boom, J. H.; Filippov, D.; Wimmer, E. Nature
1998, 393, 280–284.
3.1.9. Cowpea mosaic virus VPgpU (3b). Immobilised
peptide 20 was synthesised according to the general
procedure for solid phase peptide synthesis. In every
Fmoc deprotection cycle piperidine/DMF (1/4, v/v) was
used. Additional double couplings were introduced for
[Gln10], [Gln11], [Tyr12], [Tyr14], [Pro18], [Leu19] and
[Lys20]. A small amount of peptide-resin 20 (50 mg,
^13 mmol) was removed from the synthesiser, transferred
into a round bottom flask and suspended in CH2Cl2 (2 mL).
Subsequently, uridylylated serine building block 19
(107 mg, 0.13 mmol) and HOBt (18 mg, 0.13 mmol) were
added, and the reaction mixture was gently stirred for
15 min. Then DIC (20 mL, 0.13 mmol) was added and
stirring was continued for 1 h. The solvent and reagents
were removed by filtration and the resin was repeatedly
washed with CH2Cl2 (2£5 mL), MeOH (5 mL) and CH2Cl2
(2£5 mL). After the coupling-procedure was repeated
once more, a negative Kaiser-test showed complete
coupling of the uridylylated building block. The fully
protected peptide-resin 21 was suspended in a solution of
0.2 M TBAF (1 M in THF, 1.25 mL) in DMF/H2O/pyridine
(4/1/3, v/v/v, 4 mL) and stirred for 2 h. The resin was
filtered and washed with CH2Cl2 (2£5 mL), MeOH (5 mL)
and CH2Cl2 (2£5 mL). Next, the resin was suspended in a
mixture of TFA/TIS/H2O/PhOH/EDT (90/1.2/0.8/0.8/1.2,
v/v/v/w/v, 10 mL) and gently stirred under a blanket of
argon for 4 h. After filtration, the resin was washed with
TFA (3£5 mL) and the filtrate was concentrated. The
remaining oil was dried in high vacuum (0.5 mm Hg,
15 min), redissolved in TFA (1 mL) and precipitated by
addition to diethyl ether (15 mL). After washing with ether
(3£5 mL), the white solid was taken up in NH3·H2O
(25%)/1,4-dioxane (1/1, v/v, 10 mL) and stirred for 5 h at
room temperature. Careful evaporation of the solvents
afforded crude 3b. The obtained product 3b was purified by
cation exchange chromatography (linear gradient (A/B/C/D,
60/20/0/20!52.5/20/7.5/20, v/v/v/v in 12 CV). Next, the
obtained product was desalted (linear gradient of (10!50%
B in 10 CV). After lyophilisation nucleopeptide 3b was
obtained as a white fluffy solid (2.7 mg, 5%, TFA-salt). 31P
NMR (D2O): d 20.10. LC/MS analysis: Rt 18.54 min
(linear gradient of 10!50% B in 20 min). ESI-MS: m/z¼
5. Filippov, D.; Kuyl-Yeheskiely, E.; van der Marel, G. A.;
Tesser, G. I.; van Boom, J. H. Tetrahedron Lett. 1998, 39,
3597–3600.
6. Paul, A. V.; Rieder, E.; Kim, D. W.; van Boom, J. H.;
Wimmer, E. J. Virol. 2000, 10359–10370.
7. Melchers, W. J.; Hoenderop, J. G.; Bruins Slot, H. J.; Pleij,
C. W.; Pilipenko, E. V.; Agol, V. I.; Galama, J. M. J. Virol.
1997, 71, 686–696, and references cited therein.
8. (a) Eggen, R.; Van Kammen, A. RNA Genetics; Domingo, E.,
Holland, J. J., Ahlquist, P., Eds.; CRC: Boca Raton, FL, 1998;
Vol. 1, pp 49–69. (b) Zabel, P.; Moerman, M.; Lomonossoff,
G.; Shanks, M.; Beyreuter, K. EMBO J. 1984, 3, 1629–1634.
9. Pon, R. T. Tetrahedron Lett. 1987, 28, 3643–3646.
10. Meldal, M.; Bielfeldt, T.; Peters, S.; Jensen, K. J.; Paulsen, H.;
Bock, K. Int. J. Pept. Protein Res. 1994, 43, 529–536.
11. Wakamiya, T.; Saruta, K.; Yasuoka, J.; Kusumoto, S. Chem.
Lett. 1994, 1099–1102.
12. (a) Chang, C.-D.; Waki, M.; Ahmad, M.; Meienhofer, J.;
Lundell, E. O.; Haug, J. D. Int. J. Pept. Protein Res. 1980, 15,
´
59–66. (b) Robles, J.; Beltran, V.; Perez, Y.; Travesset, I.;
Pedroso, E.; Grandas, A. Tetrahedron 1999, 55,
13251–13264.
13. (a) Shabarova, L. A. Progress in Nucleic Acids Research and
Molecular Biology; Davidson, N. J., Cohn, W. E., Eds.;
Academic: London, 1970; Vol. 10, pp 145–182. (b) Juodka,
B. A. Nucleosides Nucleotides 1984, 3, 445–483.
14. (a) Robles, J.; Pedroso, E.; Grandas, A. Nucleic Acids Res.
1995, 23, 4151–4161. (b) Zubin, E. M.; Romanova, E. A.;
Oretskaya, T. S. Russ. Chem. Rev. 2002, 71, 239–264.
15. (a) Kuyl-Yeheskiely, E.; Tromp, C. M.; Geluk, A.; van der
Marel, G. A.; van Boom, J. H. Nucleic Acids Res. 1989, 17,
2897–2905. (b) Kuyl-Yeheskiely, E.; van der Klein, P. A. M.;
Visser, G. M.; van der Marel, G. A.; van Boom, J. H. Recl.
Trav. Chim. Pays-Bas 1986, 105, 69–70. (c) Kuyl-Yeheskiely,
E.; Tromp, C. M.; Lefeber, A. W. M.; van der Marel, G. A.;
van Boom, J. H. Tetrahedron 1988, 20, 6515–6523.
16. It has also been reported that the Fmoc group can be rapidly
removed by fluoride ions (i.e. dry TBAF in DMF): Ueki, M.;
Amemiya, M. Tetrahedron Lett. 1987, 28, 6617–6620.
17. It is also of interest to note that the 2-cyanoethyl group, which
can also be removed with fluoride ions, has been used earlier to
serve the same purpose. See in this respect: (a) Dreef-Tromp,
C. M.; van den Elst, H.; van der Marel, G. A.; van Boom, J. H.
Nucleic Acids Res. 1992, 20, 4015–4020. Robles, J.; Pedroso,
E.; Grandas, A. Tetrahedron Lett. 1994, 35, 4449–4452.
18. Van der Marel, G. A.; van Boeckel, C. C. A.; Wille, G.; van
Boom, J. H. Tetrahedron Lett. 1981, 22, 3887–3890.
1923.0 [Mþ2H]2þ, 1282.1 [Mþ3H]3þ, 962.0 [Mþ4H]4þ
770.1 [Mþ5H]5þ, calculated mass 3842.9.
,
References
´
19. Dangles, O.; Guibe, F.; Balavoine, G.; Lavielle, S.; Marquet,
1. Melnick, J. L. Fields Virology; Fields, B. N., Knipe, D. M.,
Howley, P. M., Eds.; Lippncott-Raven: Philadelphia, PA,
1996; Vol. 1, pp 665–712.
A. J. Org. Chem. 1987, 52, 4984–4993.
20. Kenner, G. W.; Todd, A. R.; Webb, R. F.; Weymouth, F. J.
J. Chem. Soc. 1954, 2288–2293.
2. (a) Lee, Y. F.; Nomoto, A.; Detjen, B. M.; Wimmer, E. Proc.
Natl Acad. Sci. USA 1977, 74, 59–63. (b) Rothberg, P. G.;
Harris, T. J. R.; Nomoto, A.; Wimmer, E. Proc. Natl Acad. Sci.
¨
21. Sihna, N. D.; Biernat, J.; McManus, J.; Koster, H. Nucleic
Acids Res. 1984, 12, 4539–4557.