CrystEngComm
DOI: 10.1039/C4CE02477J
return to the Joad principle as mentioned in the Introduction; how
exactly do we define the stereochemical terms involved?
The standard definition states that conformational isomers (or
conformers), in contrast to configurational isomers, differ only by
rotations about single bonds and thus are readily interconvertible
Further Supplementary Material to this paper includes packing diagrams
for structures 2, 3 and 4 and additional Figures from the physico-
chemical investigations of 1.
6
6
7
7
8
8
0
5
0
5
0
5
1
(a) D. Braga and F. Grepioni, Making Crystals by Design: Methods,
Techniques and Applications, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, 2007; (b) R. Hilfiker, Polymorphism in the
Pharmaceutical Industry, WILEY-VCH, 2006; (c) W. C. McCrone,
5
0
5
0
5
0
(
and represent the same substance). One standard text on
30
stereochemistry, however, reminds us that "the distinction
between configuration and conformation is subtle and K not
universally agreed upon" and takes the definition further:
"Conformation can be changed by rapid rotation around single
bonds (and in the definition of some, by rapid inversion at
trigonal pyramidal centres)" (our italics). Following this
principle, the two forms of molecule 1, although strictly speaking
showing a configurational difference, are "only" conformers
because they readily interconvert in solution, even at low
temperature, by inversion at nitrogen. Thus the two crystalline
forms certainly represent different polymorphs of 1, but it would
be unsafe and probably misleading to describe them as
Polymorphism in Physics and Chemistry of the Organic Solid State
,
ed. D. Fox, M. M. Labes and A. Weissenberg, Interscience, New
York, vol. II, pp. 725–767, 1965; (d) G. R. Desiraju, Crystal
Engineering, Mat. Sci. Monogr., Elsevier, Amsterdam, 1989; (e) J.
Bernstein, Polymorphism in Molecular Crystals, Clarendon Press,
Oxford, 2002; (f) J. Bernstein; R. Davey and O. Henck, Angew.
Chem. Int. Ed. 1999, 38, 3440–3461; (g) G. Brittain, Polymorphism
in Pharmaceutical Solids, Vol. 23, Marcel Dekker Inc., New York,
1
1
2
2
3
1999; (h) B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101
,
1629–1658.
2
3
C. Butterhof, T. Martin, P. Ector, D. Zahn, P. Niemietz, J. Senker, C.
Näther and J. Breu, Cryst. Growth Des., 2013, 12, 5365–5372; J.
Thun, L. Seyfarth; C. Butterhof; J. Senker, R. E. Dinnebier and J.
Breu, Cryst. Growth Des., 2009,
9, 2435–2441, and references
"configurational polymorphs". Indeed, this category of
therein.
polymorphs can then never, by definition, exist; configurational
isomers that do not readily interconvert are different compounds,
whereas those with facile interconversion are redefined as
conformers.
This is however a definition of convenience, and furthermore is
incomplete; what exactly does "readily" or "facile" mean? How
high must the energy barrier become before the conformers
become separable configurational isomers and the polymorphs
thus become different compounds, and at what temperature will
the separation be possible? Is it even sensible to tie the definition
to this energy value? The studies reported here underline the
importance of these questions, but exact answers may not be
possible and borderline cases will probably be discovered.
A. J. Cruz-Cabeza and J. Bernstein, Chem. Rev., 2014, 114, 2170–
2191.
4
5
e.g. Ref. 1(b), p. 22.
R. K. R. Jetti, R. Boese, J. A. R. P. Sarma, L. S. Reddy, P.
Vishweshwar and G. R. Desiraju, Angew. Chem., 2003, 115, 2008–
2012; Angew. Chem. Int. Ed., 2003, 42, 1963–1967
6
7
C. Näther, I. Jess, P. G. Jones, C. Taouss and N. Teschmit, Cryst.
Growth Des., 2013, 13, 1676–1684.
C. Näther, C. Döring, I. Jess, P. G. Jones and C. Taouss, Acta Cryst.
013, B69, 70–76.
C. Taouss and P. G. Jones, CrystEngComm, 2014, 16, 5695–5704.
,
2
8
9
90
e.g. C. Döring and P. G. Jones, Z. Naturforsch., 2013, 68b, 474–492;
C. Döring and P. G. Jones, Z. Naturforsch., 2014, 69b, 1315–1320.
0 e.g. P. G. Jones, C. Taouss, N. Teschmit and L. Thomas, Acta Cryst.,
1
2
013, B69, 405–413; C. Taouss, L. Thomas and P. G. Jones,
CrystEngComm, 2013, 15, 6829–6836.
11 H. Booth and D. V. Griffiths, J. Chem. Soc., Perkin Trans. 2, 1973,
42–844.
H. Booth and J. R. Everett, J. Chem. Soc., Chem. Commun., 1979,
9
5
8
1
1
1
2
3
4
Dedication
3
4–35.
J. M. Bailey, H. Booth, H. A. R. Y. Al-Shirayda and M. L. Trimble,
J. Chem. Soc., Perkin Trans. 2, 1984, 737–743.
E. L. Eliel, D. Kandasamy, C. Yen and K. D. Hargrave, J. Am.
Chem. Soc., 1980, 102, 3698–3707.
35
This paper is dedicated to the memory of Dr. Frank Allen, a much
respected colleague and friend.
1
1
1
1
1
1
00
Acknowledgement
15 (a) J. B. Lambert, R. G. Keske, R. E. Carhart and A. P. Jovanovich,
J. Am. Chem. Soc., 1967, 89, 3761–3767. (b) Calculation in Ref. 17.
We thank Prof. Dr. Wolfgang Bensch for granting access to his
powder diffractometer. Three referees assisted us by providing
challenging and constructive criticism that enabled us to improve
the manuscript significantly.
05 16 I. D. Blackburne, A. R. Katritzky and Y. Takeuchi, Acc. Chem. Res.,
1975, , 300–306.
F. A. L. Anet and I. Yavari, J. Am. Chem. Soc., 1977, 99, 2794–
6
1
1
7
8
40
2
796.
(a) R. J. Abraham and C. J. Medforth, J. Chem. Soc., Chem.
Commun., 1987, 1637–1638; (b) R. J. Abraham, C. J. Medforth,
Magn. Reson. Chem., 1988, 26, 334–344.
10
15
20
25
Notes and references
1
2
9
0
Y. Terui and K. Tori, J. Chem. Soc., Perkin Trans. 2, 1975, 127–
a
Institut für Anorganische und Analytische Chemie, Technische
1
33.
R. J. Abraham, C. J. Medforth and P. E. Smith, J. Comput.-Aided
Mol. Design, 1991, , 205–212.
Universität Braunschweig, Postfach 3329, D-38023 Braunschweig,
Germany. Fax: +49 531 5387; Tel: +49 531 5382; E-mail: p.jones@tu-
bs.de
45
50
55
5
2
2
2
2
1
2
3
4
J. D. Dunitz and J. Bernstein, Acc. Chem. Res., 1995, 28, 193–200.
M. Freytag and P. G. Jones, Acta Cryst., 1999, C55, 1874–1877.
Agilent, CrysAlis PRO. Agilent Ltd., Yarnton, England, 2014.
(a) G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122; (b) SHELXL-
1997, a Program for refining Crystal Structures, G. M. Sheldrick,
University of Göttingen, Germany, 1997.
b
Institut für Anorganische Chemie, Christian-Albrechts-Universität zu
Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
c
NMR-Laboratorium der Chemischen Institute, Technische Universität
Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
†
1
CCDC-1037209 (1t), -1037210 (1o), -1037211 (2), -1037212 (3), -
037213 (4) contain the supplementary crystallographic data for this
2
2
2
5
6
7
Siemens XP, version 5.03. Siemens Analytical X–Ray Instruments,
Madison, Wisconsin, U.S.A, 1994.
Bruker AM Series User Manual. Bruker Analytische Messtechnik,
Rheinstetten, Germany, 1987.
paper. These data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/.
CCDC Version 5.35; F. H. Allen, Acta Cryst., 2002, B58, 380–388.
8
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]