Organic Letters
Letter
(
3) (a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc.
2012, 14, 4358. (c) Xiong, Z.; Liang, D.; Luo, S. Org. Chem. Front.
2017, 4, 1103. (d) Ding, R.; Zhang, Q.-C.; Xu, Y.-H.; Loh, T.-P.
Chem. Commun. 2014, 50, 11661.
2
002, 124, 11250. (b) Tanaka, D.; Myers, A. G. Org. Lett. 2004, 6,
33.
4
(
4) (a) Zhang, S.-L.; Fu, Y.; Shang, R.; Guo, Q.-X.; Liu, L. J. Am.
(14) (a) Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Angew.
Chem., Int. Ed. 2013, 52, 14196. (b) Zhao, M.-N.; Ren, Z.-H.; Wang,
Y.-Y.; Guan, Z.-H. Org. Lett. 2014, 16, 608. (c) Liu, Y.; Liu, Z.-X.;
Zhang, Y.-H.; Xiong, C.-H. Adv. Synth. Catal. 2018, 360, 3492.
(d) Yu, W.-L.; Chen, J.; Gao, K.; Liu, Z.-X.; Zhang, Y.-H. Org. Lett.
2014, 16, 4870. (e) Caillot, G.; Dufour, J.; Belhomme, M.-C.;
Poisson, T.; Grimaud, L.; Pannecoucke, X.; Gillaizeau, I. Chem.
Commun. 2014, 50, 5887. (f) Munoz, S. B.; Krishnamurti, V.; Barrio,
P.; Mathew, T.; Prakash, G. K. S. Org. Lett. 2018, 20, 1042. (g) Yu,
W.-L.; Zhang, W.; Liu, Y.; Liu, Z.-X.; Zhang, Y.-H. Org. Chem. Front.
2017, 4, 77. (h) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J.
Am. Chem. Soc. 2010, 132, 18326. (i) Li, B.; Wang, N.; Liang, Y.; Xu,
S.; Wang, B. Org. Lett. 2013, 15, 136. (j) Pal, S.; Gaumont, A.-C.;
Lakhdar, S.; Gillaizeau, I. Org. Lett. 2019, 21, 5621.
Chem. Soc. 2010, 132, 638. (b) Sherikar, M. S.; Prabhu, K. R. Org.
Lett. 2019, 21, 4525. (c) Ban, S.-R.; Wang, H.-N.; Toader, V.; Bohle,
D. S.; Li, C.-J. Org. Lett. 2014, 16, 6282. (d) Sun, Z.-M.; Zhao, P.
Angew. Chem., Int. Ed. 2009, 48, 6726. (e) Gigant, N.; Chausset-
Boissarie, L.; Gillaizeau, I. Org. Lett. 2013, 15, 816. (f) Fu, Z.; Huang,
S.; Su, W.; Hong, M. Org. Lett. 2010, 12, 4992. (g) Lu, Q.; Peng, P.;
Luo, Y.; Zhao, Y.; Zhou, M.; Lei, A. Chem. - Eur. J. 2015, 21, 18580.
(
h) Fardost, A.; Lindh, J.; Sjo
Catal. 2014, 356, 870.
5) (a) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674.
b) Patai, S. In The Chemistry of the Metal-Carbon Bond; Stille, J. K.,
Ed.; Wiley: New York, 1985; Vol. 2.
6) For selected examples by merging transition-metal catalysis with
̈
berg, P. J. R.; Larhed, M. Adv. Synth.
(
(
(
photoredox catalysis, see: (a) Noble, A.; McCarver, S. J.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2015, 137, 624. (b) Cao, H.; Jiang, H.;
Feng, H.; Kwan, J. M. C.; Liu, X.; Wu, J. J. Am. Chem. Soc. 2018, 140,
(15) Jiang, H.; Huang, C.; Guo, J.; Zeng, C.; Zhang, Y.; Yu, S. Chem.
-
Eur. J. 2012, 18, 15158.
16) Ding, R.; Huang, Z.-D.; Liu, Z.-L.; Wang, T.-X.; Xu, Y.-H.; Loh,
T.-P. Chem. Commun. 2016, 52, 5617.
(
1
6360. (c) Zheng, C.; Cheng, W.-M.; Li, H.-L.; Na, R.-S.; Shang, R.
Org. Lett. 2018, 20, 2559. (d) Wang, G.-Z.; Shang, R.; Fu, Y. Org. Lett.
018, 20, 888. (e) Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quach, L.;
(
(
17) Xing, D.; Dong, G. J. Am. Chem. Soc. 2017, 139, 13664.
2
19) (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.;
Daniliuc, C. G.; Glorius, F. Chem. - Eur. J. 2018, 24, 4552. For
selected examples of transition-metal catalyzed decarboxylative
coupling of alkyl acid derivatives with olefinic electrophiles, see:
f) Edwards, J. T.; Merchant, T. R.; McClymont, K. S.; Knouse, K.
W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, B. H.; Wei, F.
L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature 2017, 545, 213.
g) Ge, L.; Jian, W.; Zhou, H.; Chen, S.; Ye, C.; Yu, F.; Qian, B.; Li,
Y.; Bao, H. Chem. - Asian J. 2018, 13, 2522. (h) Chen, H.; Sun, S.;
Liao, X. Org. Lett. 2019, 21, 3625.
(
Perchinummo, M. Tetrahedron 1971, 27, 3575. (b) Palde, P. B.;
Gareiss, P. C.; Miller, B. L. J. Am. Chem. Soc. 2008, 130, 9566. (c) Xia,
R.; Xie, M.-S.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2014, 16,
(
4
44. For Minisci reactions using other transition metals as catalysts,
see: (d) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360,
19. (e) Bi, H. P.; Zhao, L.; Liang, Y. M.; Li, C. J. Angew. Chem., Int.
Ed. 2009, 48, 792.
20) See ref 18 for the crystal information of 3cg (CCDC 1874601).
(
4
(
(
7) (a) Matsubara, R.; Kobayashi, S. Acc. Chem. Res. 2008, 41, 292.
b) Yang, H.; Carter, R. G.; Zakharov, L. N. J. Am. Chem. Soc. 2008,
30, 9238. (c) Curti, C.; Laget, M.; Carle, A. O.; Gellis, A.; Vanelle, P.
The E-configured enamides in Schemes 2 and 3 exhibited signals
(
1
similar to those of 3cg for their alkene and benzylic hydrogens in H
1
NMR.
Eur. J. Med. Chem. 2007, 42, 880. (d) Gopalaiah, K.; Kagan, H. B.
Chem. Rev. 2011, 111, 4599. (e) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L.
Chem. Rev. 2011, 111, 1713. (f) Yet, L. Chem. Rev. 2003, 103, 4283.
1
(21) The Z-configured enamides 4a−4c exhibited H NMR signals
similar to each other, which are different from their E-isomers for the
chemical shift of olefinic hydrogens and the spin splitting of benzylic
hydrogens.
(
(
g) Courant, T.; Dagousset, G.; Masson, G. Synthesis 2015, 47, 1799.
h) Bernadat, G.; Masson, G. Synlett 2014, 25, 2842. (i) Kuranaga, T.;
(22) (a) Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Y.; Li, Q.;
Sesoko, Y.; Inoue, M. Nat. Prod. Rep. 2014, 31, 514.
8) (a) Besset, T.; Kuhl, N.; Patureau, F. W.; Glorius, F. Chem. - Eur.
J. 2011, 17, 7167. (b) Gigant, N.; Gillaizeau, I. Org. Lett. 2012, 14,
304. (c) Xu, Y.-H.; Chok, Y. K.; Loh, T.-P. Chem. Sci. 2011, 2, 1822.
d) Zhu, W.; Zhao, L.; Wang, M.-X. J. Org. Chem. 2015, 80, 12047.
9) (a) Xu, Y.-H.; Zhang, Q.-C.; He, T.; Meng, F.-F.; Loh, T.-P. Adv.
Wang, H. J. Org. Chem. 2015, 80, 1550. (b) Suresh, R.; Kumaran, R.
S.; Senthilkumar, V.; Muthusubramanian, S. RSC Adv. 2014, 4, 31685.
(
(
c) Yao, Q.; Zhou, X.; Zhang, X.; Wang, C.; Wang, P.; Li, M. Org.
3
Biomol. Chem. 2017, 15, 957.
(
(
Synth. Catal. 2014, 356, 1539. (b) Feng, C.; Feng, D.-M.; Loh, T.-P.
Chem. Commun. 2014, 50, 9865. (c) Shaikh, A. C.; Shinde, D. R.;
Patil, N. T. Org. Lett. 2016, 18, 1056.
(10) (a) Pankajakshan, S.; Xu, Y.-H.; Cheng, J. K.; Low, M. T.; Loh,
T.-P. Angew. Chem., Int. Ed. 2012, 51, 5701. (b) Gigant, N.; Chausset-
Boissarie, L.; Belhomme, M.; Poisson, T.; Pannecoucke, X.;
Gillaizeau, I. Org. Lett. 2013, 15, 278. (c) Bartoccini, F.; Cannas, D.
M.; Fini, F.; Piersanti, G. Org. Lett. 2016, 18, 2762.
(11) For trifluoromethylation, see: (a) Feng, C.; Loh, T.-P. Chem.
Sci. 2012, 3, 3458. (b) Rey-Rodriguez, R.; Retailleau, P.; Bonnet, P.;
Gillaizeau, I. Chem. - Eur. J. 2015, 21, 3572. (c) Wang, H.; Cheng, Y.;
Yu, S. Sci. China: Chem. 2016, 59, 195. For Difluoromethylation, see:
(
d) Zhu, T.-H.; Zhang, Z.-Y.; Tao, J.-Y.; Zhao, K.; Loh, T.-P. Org.
Lett. 2019, 21, 6155.
12) (a) Jiang, H.; Chen, X.-J.; Zhang, Y.; Yu, S.-Y. Adv. Synth. Catal.
(
2
013, 355, 809. (b) Sun, D.-L.; Zhang, R.-H. Org. Chem. Front. 2018,
5, 92. (c) Zhu, T.-H.; Zhang, X.-C.; Zhao, K.; Loh, T.-P. Org. Chem.
Front. 2019, 6, 94. (d) Zhu, T.-H.; Zhang, X.-C.; Cui, X.-L.; Zhang,
Z.-Y.; Jiang, H.; Sun, S.-S.; Zhao, L.-L.; Zhao, K.; Loh, T.-P. Adv.
Synth. Catal. 2019, 361, 3593. (e) Li, Y.; Cheng, K.; Lu, X.; Sun, J.
Adv. Synth. Catal. 2010, 352, 1876.
(13) (a) Hesp, K. D.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2011, 133, 11430. (b) Wang, H.; Guo, L.-N.; Duan, X.-H. Org. Lett.
E
Org. Lett. XXXX, XXX, XXX−XXX