C. C. Musonda et al. / Bioorg. Med. Chem. Lett. 14 (2004) 3901–3905
3905
ability associated with such compounds, the versatility
References and notes
of this reaction allows for the synthesis of more con-
strained, biologically relevant structures with improved
stability and bioavailability. Efforts to synthesize anti-
malarial heterocycles based on the U-4CC20 and other
MCRs, incorporation of other antimalarial pharmaco-
phores (and/or combinations thereof) as well as work to
rotate the functionalities of the inputs of the Ugi 4CC in
this context is currently underway in our laboratories.
1. World Health Organisation Fact Sheet No. 94. Revised
2. Gordon, E. M.; Barret, R. W.; Dower, W. I.; Fodor, S. P.;
Gallop, M. A. J. Med. Chem. 1994, 37, 1385–1401.
3. Gallop, M. A.; Barret, R. W.; Dower, W. J.; Fodor, S. P.;
Gordon, E. M. J. Med. Chem. 1994, 37, 1233–1251.
4. Golisade, A.; Wiesner, J.; Herforth, C.; Joma, H.; Link, A.
Bioorg. Med. Chem. 2002, 10, 769–777.
Typicalprocedure : Aliquots of stock solution containing
0.226 mmol of amine were reacted with formaldehyde
(6.78 mg, 0.226 mmol) in separate vials in methanol for
30 min at room temperature. A 1.2 excess-fold of iso-
cyanide (0.27 mmol) was added, followed by acid
(0.226 mmol). After consumption of starting materials
(TLC, 36–48 h) the reaction mixtures were evaporated in
vacuo, purified by preparative TLC (eluent MeOH–
DCM 1:9) and concentrated under reduced pressure to
afford the products in good to modest yields.
5. Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 51–
80.
6. Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39,
3168–3220.
7. Ugi, I. Angew. Chem., Int. Ed. Engl. 1962, 1, 8.
8. Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown,
S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123–
131.
9. Egan, T. J.; Hunter, R.; Kaschula, C. H.; Marques, H. M.;
Misplon, A.; Walden, J. J. Med. Chem. 2000, 43, 283–
291.
10. Cheruku, S. R.; Maiti, S.; Dorn, A.; Scorneuax, B.;
Bhattacharjee, A. K.; Ellis, W.; Vennerstrom, J. L. J. Med.
Chem. 2003, 46, 3166–3169.
11. Egan, T. J. Drug Des. Rev. 2004, 1, 93–110.
12. Zu, R. D. L.; Hider, R. C. Coordin. Chem. Rev. 2002, 232,
151–171.
13. Homewood, C. A.; Warhurst, D. C.; Peters, W.; Baggaley,
V. C. Nature 1972, 235, 50–52.
14. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney,
P. J. Adv. Drug Del. Rev. 1997, 23, 3–25.
Data for compound 9: Yield 65%, mp 106–108 °C; Rf
(CH2Cl2–MeOH 9:1) 0.11; IR mmax (KBr)/cmÀ1 3420
(NH), 1674(C @O), 1567 (C@C); dH (300 MHz, DMSO-
d6) 8.28 (d, 2H, J 6.0), 8.44 (d, 1H, J 5.7), 8.25 (d, 1H, J
9.3), 7.80 (d, 1H, J 2.4), 7.48 (dd, 1H, J 2.4, 9.3), 7.27 (d,
2H, J 6.0), 6.68 (d, 1H, J 5.7), 4.22 (s, 2H), 3.88 (t, 2H, J
6.0), 3.60 (t, 2H, J 6.0), 1.42 (s, 9H, 3 Â CH3); dC
(75 MHz, DMSO-d6) 170, 169, 151.9, 150 (2C), 149,
148.4, 148.3, 136.8, 133.2, 127.5, 123.9 (2C), 120.5,
117.5, 54.0, 52.3, 51.4, 29.3, 22.6; HRFABMS 440.18569
C23H26ClN5O2 + H, [Mþ+H requires 440.18533].
15. Trager, W.; Jensen, J. B. Science 1976, 193, 673–675.
16. Lambros, C.; Vanderberg, J. P. J. Parasitol. 1979, 65, 418–
420.
17. Makler, M.; Ries, M. P.; Williams, J. A.; Bancroft, J. E.;
Piper, R. C.; Gibbins, B. L.; Hinrichs, D. Am. J. Trop.
Med. Hyg. 1993, 48, 205–210.
18. Jensen, J. B. In Vitro Culture of Plasmodium Parasites. In
Malaria Methods and Protocols; Doolan, D. L., Ed.;
Humana: Totowa, NJ, 2002; pp 477–488.
19. Singh, A.; Rosenthal, P. J. Antimicrob. Agents Chemother.
2001, 45, 949–951.
Acknowledgements
This material is based upon work supported by the
National Research Foundation of South Africa under
grant number 2053362 (K.C.).
20. Zhu, J. Eur. J. Org. Chem. 2003, 1133–1144.