Y. F. Suen et al. / Tetrahedron Letters 47 (2006) 7893–7896
7895
J = 4.8 Hz), 8.3 (1H, d, J = 4.8 Hz), 7.8 (1H, d,
J = 8.0 Hz), 7.7 (2H, m), 7.6 (1H, d, J = 8.0 Hz), 7.4
(4H, m), 7.3–7.2 (7H, m), 7.1 (1H, m), 6.8 (1H, s). 13C
NMR (CDCl3) d 57.6, 110.4, 119.3, 122.4, 123.1,
123.7, 124.7, 128.1, 128.2, 129.8, 135.8, 136.1, 137.0,
137.5, 140.0, 141.1, 147.3, 149.4, 151.5, 153.7. X-ray
C6H5
O
C6H5 O
1) nBuLi
2) H2O
C6H5
NHR
C6H5
NHR
C4H9
12
11
Scheme 4. Anti-Michael addition to acrylamide 11.
ꢀ
data: colorless, triclinic, space group P1; a = 6.5984(3),
˚
b = 9.4762(5), c = 18.8062(10) A, a = 86.689(1), b =
3
˚
anti-Michael attack by the enamino nitrogen at C8 is, to
some extent, analogues to the recent synthesis of some
annulated pyrazoles from a cyclocondensation of aryl-
hydrazines with a-oxoketene.1a It is of relevance to point
out that anti-Michael addition examples predominantly
involve additions to triple bonds5 with anti-Michael
additions to double bonds being quite rare.6 While we
were preparing this manuscript, Suzuki and co-workers
reported another example of an anti-Michael addition
reaction to a C,C-double bond.6c Our finding which,
to our knowledge constitutes the third report of an
anti-Michael addition to a double bond, bears a close
resemblance to the reported addition of n-BuLi to enam-
ido 11 to give 12 (Scheme 4).6a
87.781(1), c = 71.694(1)ꢁ, V = 1114.27(10) A , T =
93(1) K, Z = 2; 7150 reflections; R = 0.0418 for 6006
with I > 2r(I), R = 0.0515 for all. Data collection:
Bruker SMART Apex 2 diffractometer. Solution and
refinement: SHELXS97 and SHELXL97.8
Acknowledgments
The authors would like to thank the National Science
Foundation (CHE-0614756) and the National Institutes
of General Medical Sciences (GM076151) for their sup-
port of this work. The NMR spectrometers used in this
study were funded in part by grants from the NSF
(CHE-9808183) and NIH (RR-11973).
In conclusion, we have demonstrated (i) a synthesis of
the unknown 4H-pyrazolo[5,1-c]thiazine heterocycle,
(ii) the second example of a transannular reaction
in an eight-membered S,N,N-heterocycle,7 and (iii)
discovered another example of the rare anti-Michael
addition to a C,C-double bond.
References and notes
1. (a) Peruncheralathan, S.; Khan, T. A.; Illa, H.; Junjappa,
H. J. Org. Chem. 2005, 70, 10030–10035; (b) References
cited in 1a; (c) Genin, M. J.; Biles, C.; Keiser, B. J.; Swaney,
S. M.; Tarpley, W. G.; Yagi, Y.; Romero, D. L. J. Med.
Chem. 2000, 43, 1034–1040; (d) Marala, R. B.; Brown, J.
A.; Kong, J. X.; Tracey, W. R.; Knight, D. R.; Wester, R.
T.; Sun, D.; Kennedy, S. P.; Hamanaka, E. S.; Ruggeri, R.
B.; Hill, R. J. Eur. J. Pharmacol. 2002, 451, 37–41; (e)
Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J.
S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.;
Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D.
J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J.
N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert,
K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J.
Med. Chem. 1997, 40, 1347–1365.
2. Suen, Y. F.; Hope, H.; Nantz, M. H.; Haddadin, M. J.;
Kurth, M. J. J. Org. Chem. 2005, 70, 8468–8471.
3. (a) Haddadin, M. J.; Agha, B. H.; Salka, S. Tetrahedron
Lett. 1984, 54, 2577–2580; (b) Robins, L. I.; Carpenter, R.
D.; Fettinger, J. C.; Haddadin, M. J.; Tinti, D. S.; Kurth,
M. J. J. Org. Chem. 2006, 71, 2480–2485.
4. (a) Amorese, A.; Arcadi, A.; Bermocchi, E.; Cashi, S.;
Cerrini, S.; Fedeli, W.; Ortar, G. O. Tetrahedron 1989, 45,
813–828; (b) Krubsack, A. J.; Higa, T.; Slack, W. E. J. Am.
Chem. Soc. 1970, 92, 5258–5259.
5. (a) Back, T. G.; Bethell, R. J.; Parvez, M.; Wehrli, D. J.
Org. Chem. 1998, 63, 7908–7919; (b) Back, T. G.; Wehrli,
D. Tetrahedron Lett. 1995, 36, 4737–4740; (c) Gerold, A.;
Krause, N. Chem. Ber. 1994, 127, 1547–1549; (d) Rudorf,
W. D.; Schwarz, R. Synlett 1993, 369–374.
Representative procedure for 2 + 3a–c ! 7a–c: Prepara-
tion of 2,7-bis(4-bromophenyl)-4,4-diphenyl-4H-pyr-
azolo[5,1-c][1,4]thiazin-3-ol (7b). To a mixture of
thietanone 2 (45 mg, 0.18 mmol) and tetrazine 3b
(140 mg, 0.36 mmol) in THF (6 mL) was added 5%
KOH/MeOH (2 mL). The mixture was stirred for
10 min at which time TLC showed complete disappear-
ance of thietanone 2. Another three portions of thieta-
none (3 · 0.18 mmol) were added over
a 5 min
interval. The mixture was then diluted with water and
made slightly acidic with 3 N HCl (in case of the reac-
tion with 3,6-di-2-pyridyl-[1,2,4,5]tetrazine 2c, the
work-up was not made acidic) and extracted with
DCM (3·). The combined organic layer was washed
with brine, dried over Na2SO4, and evaporated to dry-
ness. Flash chromatography with 10–15% EtOAc/
hexane delivered 7b as a brown oil (114 mg, 52 %).
1
Compound 7a: (56%) IR (neat) 3527 cmꢀ1. H NMR
(CDCl3) d 7.9 (2H, br d, J = 8.4 Hz), 7.4 (18H, m), 5.9
(1H, s), 3.1 (1H, br s). 13C NMR (CDCl3) d 57.2,
103.7, 125.0, 126.8, 127.9, 128.2, 128.5, 128.8, 128.9,
129.1, 129.6, 132.1, 134.4, 135.7, 139.3, 139.9, 140.3.
1
Compound 7b: (52%) IR (neat) 3522 cmꢀ1. H NMR
6. (a) Klumpp, G. W.; Mierop, A. J. C.; Vrielink, J. J.;
Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107,
6740–6742; (b) Martin, V.; Molines, H.; Wakselman, C. J.
Org. Chem. 1992, 57, 5530–5532; See Scheme 5 in: (c)
Takemura, I.; Matsumoto, T.; Suzuki, K. Tetrahedron Lett.
2006, 47, 6677–6679.
(CDCl3) d 7.7 (2H, d, J = 8.8 Hz), 7.4–7.3 (14H, m),
7.2 (H, d, J = 8.8 Hz), 5.8 (1H, s), 3.1 (1H, br s). 13C
NMR (CDCl3) d 57.8, 104.6, 122.0, 123.0, 125.1,
128.3, 129.1, 129.2, 129.5, 130.3, 131.0, 131.5, 131.7,
133.1, 135.8, 138.1, 139.0, 140.0.
7. The first example was reported recently: Khlebnikov, A. F.;
Novikov, M. S.; Shinkevich, E. Y.; Vidovic, D. Org.
Biomol. Chem. 2005, 3, 4040–4042.
Compound 7c: (52%) IR (neat) H-bonded OH 3400–
3300 cmꢀ1 (w). 1H NMR (CDCl3) d 8.6 (1H, d,