C O MMU N I C A T I O N S
Scheme 3. Incorporation of the Glutarimide Side Chaina
to RCM precursor 20. In the event, when this seco compound was
subjected to ring-closing metathesis under the conditions shown,
1
8
only the desired (E,E,Z)-trienyl 14-membered macrolactone was
obtained. This result is in accord with our expectations that the
ruthenium carbene would be initially formed at the less congested
of the two terminal olefins and would then cyclize onto the most
accessible of the three remaining double bonds. Finally, cleavage
of the silyl ether yielded (+)-migrastatin (1), whose physical
properties are identical to those reported for natural migrastatin.
In summary, a total synthesis of (+)-migrastatin has been
accomplished for the first time. In retrospect, success was achieved
by interfacing the dihydropyrone matrix chemistry, developed in
5
our laboratories in the 1980s, with the RCM methodology of
18
Grubbs and the powerful auxiliary-dominated stereochemical
control of Evans.12 The flexible approach provided above will allow
us to enter the biological phase of the program. Toward this end,
efforts to establish an SAR profile for the migrastatins and to
identify the targets of its action are currently underway.
a
Reagents and conditions: (a) (i) MgCl2, Et3N, TMSCl, EtOAc, room
19
temperature, (ii) TFA, MeOH, room temperature, 67% from 10; (b) (i)
TESCl, imidazole, CH2Cl2, room temperature, (ii) LiBH4, MeOH, THF,
room temperature, 83%; (c) (i) Dess-Martin periodinane, CH2Cl2, room
temperature, (ii) methyl dimethylphosphonate, BuLi, THF, -78 °C to room
temperature, (iii) Dess-Martin periodinane, CH2Cl2, room temperature; (d)
LiCl, DBU, MeCN, room temperature, 57% from 14.
Acknowledgment. Support for this research was provided by
the National Institutes of Health (AI 16943). Postdoctoral fellowship
support is gratefully acknowledged by C.G. (Deutscher Akademi-
scher Austauschdienst, DAAD) and J.T.N. (General Motors Cancer
Research Program). We thank Drs. Erik Henke and Robert Benezra
Scheme 4. Completion of the Total Synthesisa
(Sloan-Kettering Institute for Cancer Research) for performing the
wound healing assay.
Supporting Information Available: Physical data for key inter-
mediates 4, 7, 10, 14, 18, and (+)-migrastatin (1) (PDF). This material
is available free of charge via the Internet at http://pubs.acs.org.
References
(
1) (a) Nakae, K.; Yoshimoto, Y.; Sawa, T.; Homma, Y.; Hamada, M.;
Takeuchi, T.; Imoto, M. J. Antibiot. 2000, 53, 1130. (b) Nakae, K.;
Yoshimoto, Y.; Ueda, M.; Sawa, T.; Takahashi, Y.; Naganawa, H.;
Takeuchi, T.; Imoto, M. J. Antibiot. 2000, 53, 1228. (c) Takemoto, Y.;
Nakae, K.; Kawatani, M.; Takahashi, Y.; Naganawa, H.; Imoto, M. J.
Antibiot. 2001, 54, 1104. (d) Nakamura, H.; Takahashi, Y.; Naganawa,
H.; Nakae, K.; Imoto, M.; Shiro, M.; Matsumura, K.; Watanabe, H.;
Kitahara, T. J. Antibiot. 2002, 55, 442.
(
(
2) Woo, E. J.; Starks, C. M.; Carney, J. R.; Arslanian, R.; Cadapan, L.;
Zavala, S.; Licari, P. J. Antibiot. 2002, 55, 141.
3) For selected reviews of angiogenesis-based cancer therapies, see: (a)
Klagsbrun, M.; Moses, M. A. Chem. Biol. 1999, 6, R217. (b) Kerbel, R.
S. Carcinogenesis 2000, 21, 505. (c) Deplanque, G.; Harris, A. L. Eur. J.
Cancer 2000, 36, 1713. (d) Scappaticci, F. A. J. Clin. Oncol. 2002, 20,
3906.
a
Reagents and conditions: (a) (i) [(Ph3P)CuH]6, PhMe, room temper-
ature, (ii) HOAc, H2O, THF (3:1:1), room temperature, 82%; (b) 2,4,6-
trichlorobenzoyl chloride, i-Pr2NEt, pyridine, PhMe, room temperature, 66%;
c) (i) second generation Grubbs catalyst (20 mol %), PhMe (0.5 mM),
reflux, 70%, (ii) HF‚pyridine, THF, room temperature, 95%.
(
(
4) Gaul, C.; Danishefsky, S. J. Tetrahedron Lett. 2002, 43, 9039.
5) (a) Danishefsky, S. J. Aldrichimica Acta 1986, 19, 59. (b) Danishefsky,
S. J. Chemtracts 1989, 2, 273.
(
hydroxyl group and reductive cleavage of the chiral auxiliary
furnished alcohol 14. After considering a number of possibilities
for connecting the glutarimide moiety to the backbone, we chose
to start with the Masamune-Roush variant of the Horner-
Wadsworth-Emmons reaction, hoping to exploit its generality and
mildness.13 Alcohol 14 was converted to â-ketophosphonate 15 via
a straightforward protocol (see Scheme 3). Treatment of the
phosphonate with LiCl and DBU in the presence of glutarimide
aldehyde 1614 resulted in efficient formation of the desired enone
7. The ability to conduct this sequence and the remaining steps
of the total synthesis without protection of the glutarimide nitrogen
proved to be particularly valuable.
Conjugate reduction of enone 17 with the Stryker reagent15 and
removal of the TES protecting group yielded alcohol 18 (Scheme
). Surprisingly, the acylation of 18 with dienoic acid 19 turned
(6) Jorgensen, M.; Iversen, E. H.; Paulsen, A. L.; Madsen, R. J. Org. Chem.
001, 66, 4630.
2
(
7) Lee, W. W.; Chang, S. Tetrahedron: Asymmetry 1999, 10, 4473.
(8) Danishefsky, S. J.; Yan, C. F.; Singh, R. K.; Gammill, R. B.; McCurry,
P. M., Jr.; Fritsch, N.; Clardy, J. J. Am. Chem. Soc. 1979, 101, 7001.
(9) Danishefsky, S. J.; Pearson, W. H.; Harvey, D. F.; Maring, C. J.; Springer,
J. P. J. Am. Chem. Soc. 1985, 107, 1256.
(
10) Luche, J. L.; Gemal, A. L. J. Am. Chem. Soc. 1979, 101, 5848.
11) Ferrier, R. J. J. Chem. Soc. 1964, 5443.
(12) Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem.
Soc. 2002, 124, 392.
13) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. M.; Masamune,
(
(
1
S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
(
(
14) Egawa, Y.; Suzuki, M.; Okuda, T. Chem. Pharm. Bull. 1963, 11, 589.
15) Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc.
1988, 110, 291.
(16) Katzenellenbogen, J. A.; Crumrine, J. A. J. Am. Chem. Soc. 1976, 98,
925.
17) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989. (b) For a recent example, see: Song, F.; Fidanze,
S.; Benowitz, A. B.; Kishi, Y. Org. Lett. 2002, 4, 647.
4
(
16
4
out to be challenging. Various coupling conditions employed led
to either extensive decomposition of starting material or products
containing significant amounts of â,γ-unsaturated ester. The latter
presumably arose via acylation of 18 with the vinylketene derived
upon activation of the acyl group of 19. Finally, the joining was
realized efficiently by a modified Yamaguchi procedure,17 leading
(
18) (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,
953. (b) For one of the early applications of RCM in complex natural
product synthesis, see: Xu, Z.; Johannes, C. W.; Salman, S. S.; Hoveyda,
A. H. J. Am. Chem. Soc. 1996, 118, 10926.
(19) Fully synthetic migrastatin was tested in a wound healing assay, and the
1
results confirmed the findings of Imoto et al. for natural migrastatin.
JA0349103
J. AM. CHEM. SOC.
9
VOL. 125, NO. 20, 2003 6043