Full Paper
indicating the cleavage of the Co–C bond, while the concentra- from red to dark green) for 15 min. Subsequently, an olefin
(
0
0.55 mmol, 1.0 equiv.) followed by a thioester (0.25 mmol,
.45 equiv.) were added via syringe and the reaction mixture was
tion of cobalt-acyl derivative E increases.
Moreover, once radical B is formed, it has to be immediately
trapped by the olefin because we were not able to detect a
species with two molecules of the catalyst attached.
irradiated with blue LED light (λ = 460 nm) for 16 h at room temper-
ature. It was then diluted with Et O, filtered through the cotton
wool and concentrated in vacuo. A crude product was purified by
column chromatography.
2
When the reaction was performed with the addition of ND Cl
4
in CD CN, the deuterium incorporation occurred only at the
3
α positions to the electron withdrawing groups originating
from the olefin thus indicating the formation of anions at these
positions resulted from reduced radicals C and G (Scheme 6).
Acknowledgments
Financial support for this work was provided by the Foundation
for Polish Sciences (FNP TEAM POIR.04.04.00–00–4232/17–00)
and National Science Center (MO, Etiuda no. 2018/28/T/ST5/
0
0162).
Keywords: Photocatalysis · Acyl radicals · Alkyl radicals ·
Vitamin B12 · Giese reaction
[
[
1] B. König, Chemical Photocatalysis, DE GRUYTER, Berlin, Boston, 2013.
2] K. J. Romero, M. S. Galliher, D. A. Pratt, C. R. J. Stephenson, Chem. Soc.
Rev. 2018, 47, 7851–7866.
[
[
3] L. Capaldo, D. Ravelli, Eur. J. Org. Chem. 2017, 2017, 2056–2071.
4] C. Raviola, S. Protti, D. Ravelli, M. Fagnoni, Green Chem. 2019, 21, 748–
7
64.
[
[
5] I. V. Alabugin, T. Harris, Chem 2017, 2, 753–755.
6] L. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 2018, 57,
1
0034–10072; Angew. Chem. 2018, 130, 10188-10228..
[
[
7] N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
8] S. W. M. Crossley, C. Obradors, R. M. Martinez, R. A. Shenvi, Chem. Rev.
2
016, 116, 8912–9000.
Scheme 6. Experiment with deuterated reagent.
[
9] P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem.
Rev. 2019, 119, 2192–2452.
[
10] L. K. G. Ackerman, L. L. Anka-Lufford, M. Naodovic, D. J. Weix, Chem. Sci.
015, 6, 1115–1119.
2
Conclusions
[11] C. E. I. Knappke, S. Grupe, D. Gärtner, M. Corpet, C. Gosmini, A. Ja-
cobi Von Wangelin, Chem. Eur. J. 2014, 20, 6828–6842.
[12] J. A. Milligan, J. P. Phelan, S. O. Badir, G. A. Molander, Angew. Chem. Int.
Ed. 2019, 58, 6152–6163; Angew. Chem. 2019, 131, 6212-6224..
In summary, under light irradiation vitamin B -mediated reac-
12
tion of adequately substituted thioesters with electron-deficient
olefins yields products resulting from the addition of two mole-
cules of olefin to the alkyl and acyl radical respectively. Interest-
[
13] W. J. Zhou, Y. H. Zhang, Y. Y. Gui, L. Sun, D. G. Yu, Synthesis 2018, 50,
359–3378.
3
[
14] J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan,
ingly, dehalogenation, a reaction common for B -catalysis is
12
Nat. Rev. Chem. 2017, 1, 0052.
competing with the developed transformation only in the case
of alkyl chlorides and benzyl halides. Inactivity of tertiary alkyl
bromides enables selective acylation of carboxylic acid bearing
this type of substituents.
Mechanistic studies revealed that alkyl bromides react with
the Co complex instantly and at much higher rate as compared
to thioesters. Both alkyl and acyl radicals selectively react with
electron deficient olefins via the Giese-type alkylation and acyl-
ation giving access to highly functionalized molecules in just
one step.
[15] M. Giedyk, K. Goliszewska, D. Gryko, Chem. Soc. Rev. 2015, 44, 3391–
404.
16] K. Tahara, L. Pan, T. Ono, Y. Hisaeda, Beilstein J. Org. Chem. 2018, 14,
553–2567.
17] M. Giedyk, S. N. Fedosov, D. Gryko, Chem. Commun. 2014, 50, 4674–
4676.
3
[
[
[
2
18] M. Giedyk, K. Goliszewska, K. Ó Proinsias, D. Gryko, Chem. Commun.
2016, 52, 1389–1392.
[
[
19] G. Pattenden, Chem. Soc. Rev. 1988, 17, 361–182.
20] R. Banerjee, Chemistry and Biochemistry of B12, Wiley, 1999.
[21] K. L. Brown, Chem. Rev. 2005, 105, 2075–2149.
[22] R. Scheffold, S. Abrecht, R. Orlinski, H.-R. Ruf, P. Stamouli, O. Tinembart,
L. Walder, C. Weymuth, Pure Appl. Chem. 1987, 59, 363–372.
[
[
23] A. Fischli, Helv. Chim. Acta 1982, 65, 1167–1190.
24] H. V. Motwani, C. Fred, J. Haglund, B. T. Golding, M. Törnqvist, Chem. Res.
Toxicol. 2009, 22, 1509–1516.
Experimental Section
[
[
25] C. J. Gantzer, L. P. Wackett, Environ. Sci. Technol. 1991, 25, 715–722.
26] J. Shey, C. M. McGinley, K. M. McCauley, A. S. Dearth, B. T. Young, W. A.
Van der Donk, J. Org. Chem. 2002, 67, 837–846.
General Synthetic Procedure: A glass tube (inner diameter =
1
8 mm) equipped with a magnetic stirrer was charged with hep-
tamethyl cobyrinate (14 mg, 5.0 mol%), activated Zn (48 mg,
.75 mmol, 3 equiv.), and NH Cl (60 mg, 1.1 mmol, 4.5 equiv.) and
[
[
27] F. Sun, T. Darbre, Org. Biomol. Chem. 2003, 1, 3154–3159.
28] H. A. O. Hill, J. M. Pratt, M. P. O'Riordan, F. R. Williams, R. J. P. Williams, J.
Chem. Soc. A 1971, 1859–1962.
0
4
sealed with a septum. Then MeCN (2.5 mL) was added and the
reaction mixture was degassed by purging the solution with argon
with simultaneous sonication in an ultrasonic bath (solution turned
[29] G. Li, F. F. Zhang, H. Chen, H. F. Yin, H. L. Chen, S. Y. Zhang, J. Chem. Soc.,
Dalton Trans. 2002, 105–110.
Eur. J. Org. Chem. 0000, 0–0
www.eurjoc.org
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim