Quantitative Insight into Variegate Porphyria
Tavazzi, D., Nascimbeni, F., Ferrari, M. C., Rocchi, E., and Cappellini,
M. D. (2009) Clinical, biochemical and genetic characteristics of variegate
porphyria in Italy. Cell. Mol. Biol. 55, 79–88
ance with the widely accepted proposition that the reactant
particles must collide with appropriate orientations to achieve
an enzymatic reaction.
14. Bonnin, A., Picornell, A., Orfila, J., Castro, J. A., and Ramon, M. M. (2009)
Clinic and genetic evaluation of variegate porphyria (VP) in a large family
from the Balearic Islands. J. Inherit. Metab. Dis. 32, S59-S66
Computational Approach for Predicting the Catalytic Effi-
ciency of Enzyme Mutants—Many reports have shown that an
enzyme activity depends on the conformational distribution of 15. Rossetti, M. V., Granata, B. X., Giudice, J., Parera, V. E., and Batlle, A.
(2008) Genetic and biochemical studies in Argentinean patients with
reactants in enzyme active site (39, 40, 46–53). In this study, we
variegate porphyria. BMC Med. Genet. 9, 54
have shown that the probability of the reactable conformations
16. Warnich, L., Kotze, M. J., Groenewald, I. M., Groenewald, J. Z., van Brakel,
of reactants could be employed to quantitatively predict the
M. G., van Heerden, C. J., de Villiers, J. N., van de Ven, W. J., Schoenmak-
catalytic efficiency of the hPPO mutants. This protocol for pre-
dicting catalytic efficiency of mutant hPPO by combining MD
simulation/statistical analysis was called Prenzyme (Fig. 7). The
protocol was based on the notion that a reaction can occur only
through the collisions by the reactants with the privileged con-
formations, and this favorable collision can be evaluated by the
probability of the privileged conformations of ternary catalytic
complex. The conformation probability density function can be
obtained from statistical analysis of the conformational distri-
bution of the ternary catalytic complex from MD and then gives
the probability value by bivariate integration over the intervals
of the corresponding geometric parameters of the privileged
conformations. The obtained probability should be correlated
with kcat/Km of enzyme mutants.
ers, E. F., Taketani, S., and Retief, A. E. (1996) Identification of three mu-
tations and associated haplotypes in the protoporphyrinogen oxidase gene
in South African families with variegate porphyria. Hum. Mol. Genet. 5,
981–984
17. Meissner, P. N., Dailey, T. A., Hift, R. J., Ziman, M., Corrigall, A. V., Rob-
erts, A. G., Meissner, D. M., Kirsch, R. E., and Dailey, H. A. (1996) A R59W
mutation in human protoporphyrinogen oxidase results in decreased en-
zyme activity and is prevalent in South Africans with variegate porphyria.
Nat. Genet. 13, 95–97
18. Arnould, S., and Camadro, J. M. (1998) The domain structure of proto-
porphyrinogen oxidase, the molecular target of diphenyl ether-type her-
bicides. Proc. Natl. Acad. Sci. U.S.A. 95, 10553–10558
19. Haworth, P., and Hess, F. D. (1988) The generation of singlet oxygen (1O2)
by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photo-
synthesis. Plant. Physiol. 86, 672–676
20. Kirsch, R. E., Meissner, P. N., and Hift, R. J. (1998) Variegate porphyria.
Semin. Liver. Dis. 18, 33–41
21. Maneli, M. H., Corrigall, A. V., Klump, H. H., Davids, L. M., Kirsch, R. E.,
and Meissner, P. N. (2003) Kinetic and physical characterisation of recom-
binant wild-type and mutant human protoporphyrinogen oxidases.
Biochim. Biophys. Acta 1650, 10–21
Acknowledgments—The computation was carried out at National
Supercomputer Center in Tianjin, and the calculations were per-
formed on TianHe-1(A). We are grateful to the staff at beamline
BL-17U1 in the Shanghai Synchrotron Radiation Facility for excellent
technical assistance during data collection.
22. Qin, X., Tan, Y., Wang, L., Wang, Z., Wang, B., Wen, X., Yang, G., Xi, Z.,
and Shen, Y. (2011) Structural insight into human variegate porphyria
disease. FASEB J. 25, 653–664
23. Shepherd, M., and Dailey, H. A. (2005) A continuous fluorimetric assay for
protoporphyrinogen oxidase by monitoring porphyrin accumulation.
Anal. Biochem. 344, 115–121
REFERENCES
1. Matringe, M., Camadro, J. M., Block, M. A., Joyard, J., Scalla, R., Labbe, P.,
and Douce, R. (1992) Localization within chloroplasts of protoporphy-
rinogen oxidase, the target enzyme for diphenylether-like herbicides.
J. Biol. Chem. 267, 4646–4651
24. Sun, L., Wen, X., Tan, Y., Li, H., Yang, X., Zhao, Y., Wang, B., Cao, Q., Niu,
C., and Xi, Z. (2009) Site-directed mutagenesis and computational study
of the Y366 active site in Bacillus subtilis protoporphyrinogen oxidase.
Amino Acids 37, 523–530
2. Dailey, T. A., and Dailey, H. A. (1996) Human protoporphyrinogen oxi-
dase: expression, purification, and characterization of the cloned enzyme.
Protein Sci. 5, 98–105
25. Qin, X., Sun, L., Wen, X., Yang, X., Tan, Y., Jin, H., Cao, Q., Zhou, W., Xi,
Z., and Shen, Y. (2010) Structural insight into unique properties of proto-
porphyrinogen oxidase from Bacillus subtilis. J. Struct. Biol. 170, 76–82
26. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data
collected in oscillation mode. pp 307–326, Elsevier, Boston, MA
27. McCoy, A. J. (2007) Solving structures of protein complexes by molecular
replacement with phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41
28. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molec-
ular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132
29. Bru¨nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P.,
Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S.,
Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallog-
raphy & NMR system: a new software suite for macro-molecular structure
determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921
3. Poulson, R., and Polglase, W. J. (1975) The enzymic conversion of proto-
porphyrinogen IX to protoporphyrin IX. Protoporphyrinogen oxidase ac-
tivity in mitochondrial extracts of Saccharomyces cerevisiae. J. Biol. Chem.
250, 1269–1274
4. Dailey, H. A. (1990) Biosynthesis of Heme and Chlorophylls, pp. 287–391,
McGraw-Hill, New York
5. Meissner, P. N., Day, R. S., Moore, M. R., Disler, P. B., and Harley, E. (1986)
Protoporphyrinogen oxidase and porphobilinogen deaminase in variegate
porphyria. Eur. J. Clin. Invest. 16, 257–261
6. Deybach, J. C., de Verneuil, H., and Nordmann, Y. (1981) The inherited
enzymatic defect in porphyria variegata. Hum. Genet. 58, 425–428
7. Brenner, D. A., and Bloomer, J. R. (1980) The enzymatic defect in variegate
prophyria. Studies with human cultured skin fibroblasts. N. Engl. J. Med. 30. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M.
302, 765–769
(1993) PROCHECK: a program to check the stereochemical quality of
protein structures. J. Appl. Crystallogr. 26, 283–291
8. Meissner, P. N., Corrigall, A. V., and Hift, R. J. (2012) Fifty years of por-
phyria at the University of Cape Town. S. Afr. Med. J. 102, 422–426
9. Elder, G. H., Hift, R. J., and Meissner, P. N. (1997) The acute porphyrias.
Lancet 349, 1613–1617
31. Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz,
K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., and Woods, R. J. (2005)
The Amber biomolecular simulation programs. J. Comput. Chem. 26,
1668–1688
10. Kauppinen, R. (2005) Porphyrias. Lancet 365, 241–252
11. Puy, H., Gouya, L., and Deybach, J. C. (2010) Porphyrias. Lancet 375, 32. Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang,
924–937
R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., and Kollman, P.
(2003) A point-charge force field for molecular mechanics simulations of
proteins based on condensed-phase quantum mechanical calculations.
J. Comput. Chem. 24, 1999–2012
12. Schneider-Yin, X., Harms, J., and Minder, E. I. (2009) Porphyria in Swit-
zerland, 15 years experience. Swiss Med. Wkly. 139, 198–206
13. Di Pierro, E., Ventura, P., Brancaleoni, V., Moriondo, V., Marchini, S.,
APRIL 26, 2013•VOLUME 288•NUMBER 17
JOURNAL OF BIOLOGICAL CHEMISTRY 11739