Mendeleev Commun., 2015, 25, 15–16
The method is applicable to the nitration of hexahydro-
economically beneficial: the nitration agent N2O5 can be generated
from available N2O4,16 and the CO2 solvent is easily separable
from the products and can be reused.
In summary, we have developed a new environment-friendly
and explosion-safe synthesis of dinitroglycoluril and its analogues
by N-nitration of corresponding glycoluril derivatives with N2O5
in liquid carbon dioxide medium.
imidazo[4,5-d]imidazol-2(1H)-one dihydrochloride 5 in which
cyclic urea fragment is fused with the imidazolidine unit. In this
case, trinitro derivative 6 formed in 56% yield under the action
of N2O5 (4 equiv.) in liq-CO2 medium (Scheme 2).
O2N
NO2
H
N
H
N
N
N
N2O5 (4.0 equiv.)
O
This work was supported by the Russian Foundation for Basic
Research (grant no. 13-03-12223-ofi_m).
O
liq-CO2, 80 bar,
5–20 °C, 2 h
N
H
N
H
N
N
2 HCl
H
O2N
References
5
6 (56%)
1 R. Meyer, J. Köhler and A. Homburg, Explosives, 5th edn., Wiley-VCH,
Weinheim, 2002.
Scheme 2
2 J. Boileau, E. Wimmer, M. Carail and R. Gallo, Bull. Soc. Chim. Fr.,
1986, 3, 465.
3 I. V. Kuchurov, I. V. Fomenkov, S. G. Zlotin and V. A. Tartakovsky,
The proposed approach significant reduces explosion risks
due to the dilution of reaction mixture with liq-CO2 resistant
towards the action of nitrating agents. Furthermore, it allows
one to avoid the use of mixed acids associated with energy-
consuming disposal of corresponding acid wastes and environ-
ment pollution problems. Despite of the necessity of rather
expensive high-pressure equipment, the method may be even
Mendeleev Commun., 2013, 23, 81.
4 R. Span and W. Wagner, J. Phys. Chem. Ref. Data, 1996, 25, 1509.
5 J. A. Riddick and W. B. Bunger, Organic Solvents, 3rd edn., Wiley-
Interscience, New York, 1970.
6 K. Schofield, Aromatic Nitration, Cambridge University Press, UK, 1980.
7 J. H. Robson, J. Am. Chem. Soc., 1955, 77, 107.
8 A. L. Kovalenko, Yu. V. Serov and I. V. Tselinskii, J. Gen. Chem. USSR
(Engl. Transl.), 1991, 61, 2581 (Zh. Obshch. Khim., 1991, 61, 2778).
9 A. A. Bakibaev, R. R.Akhmedzhanov,A.Yu.Yagovkin, T. P. Novozheeva,
V. D. Filimonov and A. S. Saratikov, Pharm. Chem. J., 1993, 27, 401
[Khim.-Farm. Zh., 1993, 27 (6), 29].
respectively. Isolated yields are given in Table 1. The NMR spectra of
known compounds 1a,2 1b14 and 615 correspond to reported data. Melting
points of compounds 1a–c and 4 were not observed. Temperatures TID at
which originally colorless solids started to become dark (initiation of a
decomposition) are given below.
10 K. Kim, J. Zhao, H.-J. Kim, S.-Y. Kim and J. Oh, US Patent 2003212268,
2003.
1
1,4-Dinitroglycoluril 1a: TID 192°C. H NMR, d: 6.03 (s, 2H, CH),
11 F. B. Slezak, H. Bluestone, T. A. Magee and J. H. Wotiz, J. Org. Chem.,
1962, 27, 2181.
9.83 (s, 2H, NH). 13C NMR, d: 149.0, 63.8. 14N NMR, d: –39.5.
3
a,6a-Dimethyl-1,4-dinitrotetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-
12 S. L. Vail, C. M. Moran, H. B. Moore and R. M. H. Kullman, J. Org.
1
dione 1b: TID 194°C. H NMR, d: 1.82 (s, 6H, Me), 9.94 (s, 2H, NH).
Chem., 1962, 27, 2071.
13 Inorganic Syntheses, ed. L. F. Audrieth, McGraw-Hill, NewYork, 1950,
vol. III, p.78.
14 W. M. Sherrill, E. C. Johnson and A. J. Paraskos, Propellants Explosives
Pyrotechnics, 2014, 39, 90.
15 P. F. Pagoria, A. R. Mitchell and E. S. Jessop, Propellants Explosives
Pyrotechnics, 1996, 21, 14.
16 M. B. Talawar, R. Sivabalan, B. G. Polke, U. R. Nair, G. M. Gore and
S. N. Asthana, J. Hazard. Mater., 2005, 124, 153.
13C NMR, d: 146.5, 76.9, 17.8. 14N NMR, d: –46.6.
3a,6a-Butano-1,4-dinitrotetrahydroimidazo[4,5-d]imidazole-2,5-dione
1c: TID 199°C. 1H NMR, d: 1.29 (m, 2H, CH2), 1.63 (m, 2H, CH2), 2.08
(m, 2H, CH2), 2.59 (d, 2H, CH2, J 14.0 Hz), 9.97 (s, 2H, NH). 13C NMR,
d: 147.2, 75.9, 28.6, 18.1. 14N NMR, d: –48.2.
1,3-Dimethyl-4,6-dinitrotetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-
1
dione 4: TID 206°C. H NMR, d: 2.86 (s, 6H, Me), 6.16 (s, 2H, CH).
13C NMR, d: 157.8, 142.0, 69.7, 30.3. 14N NMR, d: –48.4.
1,4,6-Trinitrohexahydroimidazo[4,5-d]imidazol-2(1H)-one 6: mp 196°C
1
(lit.,15 mp 196–197°C). H NMR, d: 5.57, 6.22 (AB quartet, 2H, CH,
J 10.8 Hz, J 185.7 Hz), 6.09, 7.37 (AB quartet, 2H, CH2, J 7.1 Hz,
J 374.7 Hz), 9.89 (s, 1H, NH). 13C NMR, d: 205.3, 75.2, 67.3, 64.6.
14N NMR, d: –48.3, –36.5, –34.5.
Received: 22nd July 2014; Com. 14/4430
– 16 –