Macromolecules
Article
linking the nanoparticles into nanogels as shown in Figure 4A.
The formed nanogels have many 2-((2-nitrobenzyl)thio)-
ethanol units, via UV irradiation, 2-((2-nitrobenzyl)thio)-
ethanol can in situ release 2-mercaptoethanol, and the released
2-mercaptoethanol can break the disulfide bonds in the
nanogel; therefore, the nanogel self-immolates via UV
irradiation as shown Figure 4. In Figure 4C, it is clear that
the solution becomes clear from opaque via UV irradiation for
3 h. However, the nanogel without 2-((2-nitrobenzyl)thio)-
ethanol formed from disulfide-containing poly(amidoamine)
cannot self-immolate via UV irradiation; the solution keeps
opaque via UV irradiation for 3 h (Figure S12). Furthermore,
DLS results show that the nanogel with the size of 380 nm self-
immolates into small fragments with size of several nanometers
via UV irradiation. AFM images also indicate that the nanogel
with 2-((2-nitrobenzyl)thio)ethanol can self-immolate via UV
activation (Figure 4E).
Polyplexes consisting of gWiz-Luc plasmid DNA and the
prepared hyperbranched polymer were prepared in PBS (10
mM) at pH 7.4 with N/P ratios of 20 and 40. The polymer
solution was rapidly added to the DNA and mixed by vortex,
followed by 20 min incubation at room temperature prior to
use. Transfection efficiency was tested in Hela cell lines. After 4
h of incubation, the transfection mixture was removed and the
cells were cultured in fresh full DMEM media and under UV
irradiation for 0, 10, and 20 min. The result shows that the
transfection efficiency increases with the increase of UV
irradiation time, indicating that UV irradiation can help the
release of DNA in cell (Figure S13).
(WK2060200012), and the Program for New Century
Excellent Talents in Universities (NCET-11-0882) is gratefully
acknowledged.
REFERENCES
■
(1) Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.;
Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.;
Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9
(2), 101−113.
(2) Krejchi, M. T.; Atkins, E. D. T.; Waddon, A. J.; Fournier, M. J.;
Mason, T. L.; Tirrell, D. A. Science 1994, 265 (5177), 1427−1432.
(3) Miyata, T.; Asami, N.; Uragami, T. Nature 1999, 399 (6738),
766−769.
(4) Wang, C.; Stewart, R. J.; Kopecek, J. Nature 1999, 397 (6718),
417−420.
(5) Sasaki, T.; Yoneyama, T.; Hashimoto, S.; Takemura, S.; Naka, Y.
J. Polym. Sci., Polym. Chem. 2013, 51 (18), 3873−3880.
(6) DiLauro, A. M.; Abbaspourrad, A.; Weitz, D. A.; Phillips, S. T.
Macromolecules 2013, 46 (9), 3309−3313.
(7) Baker, M. S.; Yadav, V.; Sen, A.; Phillips, S. T. Angew. Chem., Int.
Ed. 2013, 52 (39), 10295−10299.
(8) Dehousse, V.; Garbacki, N.; Colige, A.; Evrard, B. Biomaterials
2010, 31 (7), 1839−1849.
(9) You, Y. Z.; Hong, C. Y.; Pan, C. Y.; Wang, P. H. Adv. Mater.
2004, 16 (21), 1953−+.
(10) Buenger, D.; Topuz, F.; Groll, J. Prog. Polym. Sci. 2012, 37 (12),
1678−1719.
(11) Garty, S.; Kimelman-Bleich, N.; Hayouka, Z.; Cohn, D.;
Friedler, A.; Pelled, G.; Gazit, D. Biomacromolecules 2010, 11 (6),
1516−1526.
(12) Gustafson, J. A.; Price, R. A.; Frandsen, J.; Henak, C. R.;
Cappello, J.; Ghandehari, H. Biomacromolecules 2013, 14 (3), 618−
625.
CONCLUSIONS
■
A novel multiresponsive macromolecule with disulfide bonds in
the backbone, N,N′-dimethylamine side units, and 2-((2-
nitrobenzyl)thio)ethanol terminals has been prepared via
Michael addition reaction. It not only can self-cross-link via
intermolecular disulfide exchange via heating but also can self-
immolate by the in situ released 2-mercaptoethanol from 2-((2-
nitrobenzyl)thio)ethanol terminals via UV activation. Further-
more, in aqueous solution, this polymer self-constructs a
disulfide-cross-linked nanogel, and this formed nanogel can self-
immolate by the in situ released 2-mercaptoethanol via UV
activation. The self-cross-linking and self-immolative properties
of this hyperbranched polymer make it have potential
applications in nanomedicine.
(13) Yan, J. J.; Wang, Z. K.; Lin, X. S.; Hong, C. Y.; Liang, H. J.; Pan,
C. Y.; You, Y. Z. Adv. Mater. 2012, 24 (41), 5617−5624.
(14) Yu, J.; Chary, S.; Das, S.; Tamelier, J.; Pesika, N. S.; Turner, K.
L.; Israelachvili, J. N. Adv. Funct. Mater. 2011, 21 (16), 3010−3018.
(15) Skorb, E. V.; Mohwald, H. Adv. Mater. 2013, 25 (36), 5029−
5042.
(16) Meijer, E. W.; van Genderen, M. H. P. Nature 2003, 426
(6963), 128−129.
(17) Sagi, A.; Weinstain, R.; Karton, N.; Shabat, D. J. Am. Chem. Soc.
2008, 130 (16), 5434.
(18) Blencowe, C. A.; Russell, A. T.; Greco, F.; Hayes, W.;
Thornthwaite, D. W. Polym. Chem. 2011, 2 (4), 773−790.
(19) McBride, R. A.; Gillies, E. R. Macromolecules 2013, 46 (13),
5157−5166.
(20) Esser-Kahn, A. P.; Sottos, N. R.; White, S. R.; Moore, J. S. J. Am.
Chem. Soc. 2010, 132 (30), 10266−10268.
ASSOCIATED CONTENT
* Supporting Information
■
S
(21) Chen, E. K. Y.; McBride, R. A.; Gillies, E. R. Macromolecules
2012, 45 (18), 7364−7374.
Detailed characterization of the small molecules and the
corresponding polymers. This material is available free of
(22) You, Y. Z.; Yu, Z. Q.; Cui, M. M.; Hong, C. Y. Angew. Chem., Int.
Ed. 2010, 49 (6), 1099−1102.
(23) You, Y. Z.; Hong, C. Y.; Pan, C. Y. Adv. Funct. Mater. 2007, 17
(14), 2470−2477.
AUTHOR INFORMATION
Corresponding Author
*Fax 86 551 63601592; Tel 86 551 63606081; e-mail hongcy@
■
(24) Hong, C. Y.; You, Y. Z.; Wu, D. C.; Liu, Y.; Pan, C. Y. J. Am.
Chem. Soc. 2007, 129 (17), 5354.
(25) Canadell, J.; Goossens, H.; Klumperman, B. Macromolecules
2011, 44 (8), 2536−2541.
(26) Yu, Z. Q.; Sun, J. T.; Pan, C. Y.; Hong, C. Y. Chem. Commun.
2012, 48 (45), 5623−5625.
Notes
The authors declare no competing financial interest.
(27) Han, L. F.; Chen, Q. B.; Hu, Z. T.; Piao, J. G.; Hong, C. Y.; Yan,
J. J.; You, Y. Z. Macromol. Rapid Commun. 2014, 35 (6), 649−654.
(28) Piao, J. G.; Yan, J. J.; Wang, M. Z.; Wu, D. C.; You, Y. Z.
Biomater. Sci. 2014, 2 (3), 390−398.
ACKNOWLEDGMENTS
■
Financial support from National Natural Science Foundation of
China (51033005, 51273187, 21374107, and 21090354), the
Fundamental Research Funds for the Central Universities
(29) Pauloehrl, T.; Delaittre, G.; Bastmeyer, M.; Barner-Kowollik, C.
Polym. Chem. 2012, 3 (7), 1740−1749.
4142
dx.doi.org/10.1021/ma5009012 | Macromolecules 2014, 47, 4136−4143