in a recombinant manner.18 Because there are hardly any other
proteins known that bind effectively riboflavin,19 we are
currently exploring proteins that bind the phosphorylated
form of riboflavin, FMN. A plethora of FMN-containing
enzymes is known, providing a good starting point for design
of new flavoenzymes by cofactor redesign.
Notes and references
1 (a) F. Hollman, I. W. C. E. Arends, K. Buhler, A. Schallmey and
¨
¨
B. Buhler, Green Chem., 2011, 13, 226; (b) D. E. Torres Pazmino,
M. Winkler, A. Glieder and M. W. Fraaije, J. Biotechnol., 2010,
146, 9; (c) V. B. Urlacher and R. D. Schmid, Curr. Opin. Chem.
Biol., 2006, 10, 156.
2 (a) F. Hollman, I. W. C. E. Arends and K. Buhler, ChemCatChem,
¨
2010, 2, 762; (b) S. H. Lee, D. H. Nam and C. B. Park, Adv. Synth.
Catal., 2009, 351, 2589; (c) F. Hollman, K. Hofstetter and A. Schmid,
Trends Biotechnol., 2006, 24, 163; (d) G. de Gonzalo, G. Ottolina,
M. W. Fraaije and G. Carrea, Chem. Commun., 2005, 3724.
3 (a) D. E. Torres Pazmino, R. Snajdrova, B.-J. Braas, M. Ghrobial,
M. D. Mihovilovic and M. W. Fraaije, Angew. Chem., Int. Ed.,
2008, 47, 2275; (b) V. I. Tishkov and V. O. Popov, Biomol. Eng.,
2006, 23, 89; (c) C.-H. Wong and G. M. Whitesides, J. Am. Chem.
Soc., 1981, 103, 4890.
Fig. 1 (a) The electrostatic surface of RfBP is shown with ethylated
flavin 2 in the riboflavin binding pocket. (b) Close-up view of the bound
flavins 3–6 as obtained by docking in RfBP. The comparative binding
energy scores for docking flavins 2–6 (ꢀ115.8, ꢀ87.9, ꢀ90.3, ꢀ100.3, and
ꢀ98.0, resp.) confirm that all flavins display a good affinity for RfBP.
4 See for example: F. Hollman, A. Taglieber, F. Schulz and
M. T. Reetz, Angew. Chem., Int. Ed., 2007, 46, 1.
5 (a) K. Matsuura, T. Tosha, S. Yoshioka, S. Takahashi, K. Ishimori
and I. Morishima, Biochem. Biophys. Res. Commun., 2004, 323, 1209;
(b) H. Joo, Z. Lin and F. H. Arnold, Nat. Biotechnol., 1999, 17, 670.
6 (a) J. R. Cashman, Biochem. Biophys. Res. Commun., 2005,
338, 599; (b) D. M. Ziegler, Drug Metab. Rev., 2002, 34, 503.
7 V. Massey, J. Biol. Chem., 1994, 269, 22459.
8 (a) A. Mattevi, Trends Biochem. Sci., 2006, 31, 276; (b) V. Massey,
Biochem. Soc. Trans., 2000, 28, 283.
9 Unpublished results.
between tyrosine and tryptophan residues. This p–p stacking
interaction is also present in the other docked flavins. However,
surprisingly, flavins 3–5 bind in such a way that the alloxazine
moiety is rotated by 1801. In this way, these flavins are positioned
with the N5-alkyl group in a pocket that is normally occupied by
the ribityl chain of riboflavin. Such an inverse binding mode may
well explain the observed opposite enantioselectivity. Yet another
mode of binding is predicted for flavin 6. In this case, the
pyrimidine moiety of the alloxazine ring is pointing inwards while
the N5-ethyl group still occupies the same binding pocket as
observed for flavin 2. This is in line with the observed similarity in
enantioselectivities for flavins 2 and 6 (Table 1).
10 (a) Y. Imada, T. Kitagawa, T. Ohno, H. Iida and T. Naota, Org.
Lett., 2010, 12, 32; (b) V. Mojr, V. Herzig, M. Budesı
R. Cibulka and T. Kraus, Chem. Commun., 2010, 46, 7599;
´
nsky´ ,
(c) H. Schamaderer, P. Hilgers, R. Lechner and B. Konig, Adv.
¨
Synth. Catal., 2009, 351, 163; (d) J. Svoboda, H. Schamaderer and
B. Konig, Chem.–Eur. J., 2008, 14, 1854; (e) F. G. Gelalcha, Chem.
¨
Rev., 2007, 107, 3338.
11 (a) C. Kemal, T. W. Chan and T. C. Bruice, Proc. Natl. Acad. Sci.
U. S. A., 1977, 74, 405; (b) C. Kemal and T. C. Bruice, Proc. Natl.
Acad. Sci. U. S. A., 1976, 73, 995.
12 Some examples: (a) C. Smit, M. W. Fraaije and A. J. Minnaard,
J. Org. Chem., 2008, 73, 9482; (b) Y. Imada, H. Iida,
S.-I. Murahashi and T. Naota, Angew. Chem., Int. Ed., 2005,
This study demonstrates that by cofactor redesign, novel
flavin-containing biocatalysts can be generated. By introdu-
cing peroxide-reactive flavins into a protein, it becomes cata-
lytically active while the environment of the flavin binding
cavity renders the protein selective in substrate binding, thus
creating a fully self-sufficient artificial flavoprotein mono-
oxygenase. It is worth noting that this approach of enzyme
engineering does not depend on the availability of an active
enzyme as a starting point. RfBP, with riboflavin bound, does
not display any catalytic activity. Replacing the natural ribo-
flavin cofactor by a mildly modified riboflavin (N5-ethylribo-
flavin) was found to be enough to create a peroxide-driven
oxidative catalyst. Both components of such artificial flavoen-
zymes are relatively easy to obtain: Rf BP can be obtained
from chicken eggs in huge quantities while riboflavin is
relatively cheap and its alkylation is easy. We could also show
that altering the enantioselective behaviour of the biocatalyst
is dependent on the employed flavin derivative. By this it was
possible to obtain both enantiomers of a set of sulfoxides,
albeit with moderate optical purities values. As has been
shown for other artificial enzymes, e.g. artificial metallo-
enzymes,16 tailoring by protein engineering is typically re-
quired for achieving highly (enantio)selective biocatalysts.17
Unfortunately, this is currently not an option when using
Rf BP as host protein because this protein cannot be produced
´
44, 1704; (c) A. A. Linden, N. Hermanns, S. Otts, L. Kruger and
¨
J.-E. Backvall, Chem.–Eur. J., 2005, 11, 112.
¨
13 (a) H. L. Monaco, EMBO J., 1997, 16, 1475; (b) F. Muller and
¨
W. J. H. van Berkel, in Chemistry and Biochemistry of Flavoenzymes,
ed. F. Muller, CRC Press, Boca Raton, 1991, vol. 1, p. 261.
¨
14 (a) M. H. Hefti, J. Vervoort and W. J. H. van Berkel, Eur. J.
Biochem., 2003, 270, 4227; (b) H. M. Farrell, Jr., M. F. Mallette,
E. G. Buss and C. O. Clagett, Biochim. Biophys. Acta, 1969, 194, 433.
15 (a) A. Wessiak, L. M. Schopfer, L. Yuan, T. C. Bruice and V. Massey,
Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 4246; (b) J. Becvar and
G. Palmer, J. Biol. Chem., 1982, 157, 5607; (c) C. Walsh, J. Fisher,
R. Spencer, D. W. Graham, W. T. Ashton, J. E. Brown, R. D. Brown
and E. F. Rogers, Biochemistry, 1978, 17, 1942.
16 (a) P. J. Deuss, R. den Heeten, W. Laan and P. C. J. Kamer,
Chem.–Eur. J., 2011, 17, 4680; (b) M. Creus and T. R. Ward, Org.
Biomol. Chem., 2007, 5, 1835; (c) M. Ohashi, T. Koshiyama,
T. Ueno, M. Yanase, H. Fujii and Y. Watanabe, Angew. Chem.,
Int. Ed., 2003, 42, 1005.
17 C. M. Thomas and T. R. Ward, Chem. Soc. Rev., 2005, 34, 337.
18 P. Pattanaik, P. Sooryanarayana, P. R. Adiga and
S. S. Visweswariah, Eur. J. Biochem., 1998, 258, 411.
19 In order to vary the RfBP properties, we have explored RfBP from
Coturnix japonica (Japanese quail) because the protein sequence of
the respective Rf BP suggests several amino acid substitutions close
to the flavin binding pocket. Unfortunately, this did not yield
better results (see ESIw).
c
11052 Chem. Commun., 2011, 47, 11050–11052
This journal is The Royal Society of Chemistry 2011