Mendeleev Commun., 2007, 17, 239–240
Table 1 Yields, melting points, and fractions of tautomers A, B and C in CDCl solutions for compounds 3a–e.
3
1
Yield /
overall
yield (%)
Tautomer fractions (%) ( H NMR)
Published data
Mp/°C
Product
X
Mp/°C
a
A
B
C
Yield (%)
Reference
3
3
3
3
3
a
b
c
d
e
Br
Cl
H
OMe
NMe2
94 / 70
88 / 78
94 / 92
99 / 96
96 / 86
184–185b
153–154
145–147
182–184
224–226
13.8
15.5
26.9
56.9
92.2
78.3
77.0
63.8
37.8
7.0
7.9
7.5
9.3
5.3
0.8
48
78
90
76
—
125–126
155–156
145–147
182–184
—
3(m)
6(c)
6(c)
6(c)
—
a
b
Yields of 3a–e with the count of yields of 2a–e. The melting point of 3a from different experiments was checked repeatedly. Spectral and elemental analysis
3
(m)
data for the synthesised compound correspond to the structure of 3a and are consistent with published data.
and, for known compounds, by comparison of their spectro-
scopic constants with literature values.
C.-S. Da, Z.-Q. Xin, R. Wang, M. C. K. Choi and A. S. C. Chan, Org.
Lett., 2001, 3, 2733; (e) Y. Wang, X. Li and K. Ding, Tetrahedron:
Asymmetry, 2002, 13, 1291; (f) J. Lu, X. Xu, C. Wang, J. He, Y. Hu and
H. Hu, Tetrahedron Lett., 2002, 43, 8367; (g) Y. Zhang, L. Zhang,
Z. Guo and L. Zhu, J. Coord. Chem., 2002, 55, 1393; (h) K. Li, Z. Zhou,
L. Wang, Q. Zhou and C. Tang, Main Group Met. Chem., 2002, 25,
663; (i) M. R. Saidi and N. Azizi, Tetrahedron: Asymmetry, 2003, 14,
389; (j) J.-X. Ji, L.-Q. Qiu, C. W. Yip and A. S. C. Chan, J. Org. Chem.,
6(c)
As expected, in agreement with published data, compounds
3
a–e in CDCl solution exist as mixtures of tautomers A, B
3
and C due to ring–chain tautomerism. Their % fractions in the
mixture as determined by integration of the HC1 and HC3 signals
are shown in Table 1. One can see from Table 1 that the
presence of donor substituents in starting compound 2 results in
the formation of products in which imine form A predominates,
whereas acceptor substituents stabilise oxazine forms B and C.
Indeed, the hitherto unknown bis(dimethylamino) derivative 3e‡
containing the strongest n electron pair-donor (dimethylamino)
groups at the para positions of both phenyl rings is charac-
terised by the highest fraction of imine form A, namely, 92.2%.
In summary, we have presented a new method for the
synthesis of Betti base precursors by reaction of β-naphthol
with 1,3,5-triaryl-2,4-diazapenta-1,4-dienes. The new method
provides Betti bases in high yield and purity, facilitating
subsequent separation into the individual enantiomers.
2
003, 68, 1589; (k) X. Xu, J. Lu, Y. Dong, R. Li, Z. Ge and Y. Hu,
Tetrahedron: Asymmetry, 2004, 15, 475; (l) Y. Dong, J. Sun, X. Wang,
X. Xu, L. Cao and Y. Hu, Tetrahedron: Asymmetry, 2004, 15, 1667; (m)
I. Szatmári, T. A. Martinek, L. Lázár, A. Koch, E. Kleinpeter, K. Neuvonen
and F. Fülöp, J. Org. Chem., 2004, 69, 3645; (n) X. Xu, J. Lu, R. Li,
Z. Ge, Y. Dong and Y. Hu, Synlett., 2004, 122; (o) I. Szatmári,
A. Hetényi, L. Lázár and F. Fülöp, J. Heterocycl. Chem., 2004, 41, 367;
(p) X. Wang, Y. Dong, J. Sun, X. Xu, R. Li and Y. Hu, J. Org. Chem.,
2005, 70, 1897; (q) S. Dahmen and M. Lormann, Org. Lett., 2005, 7,
4
597; (r) J.-X. Ji, J. Wu, T. T.-L. Au-Yeung, C.-W. Yip, R. K. Haynes
and A. S. C. Chan, J. Org. Chem., 2005, 70, 1093.
M. Betti, Gazz. Chim. Ital., 1900, 30, II, 310.
M. Betti, Org. Synth. Coll. Vol., 1941, I, 381.
4
5
6 (a) H. E. Smith and N. E. Cooper, J. Org. Chem., 1970, 35, 2212;
(
(
b) H. Mohrle, C. Miller and D. Wendisch, Chem. Ber., 1974, 107, 2675;
c) I. Szatmári, T. A. Martinek, L. Lázár and F. Fülöp, Tetrahedron,
This study was supported by the Civilian Research and
Development Foundation (grant no. RUC2-2638-KA-05).
2
003, 59, 2877.
(a) V. P. Mamaev and V. M. Ignat’ev, Izv. Akad. Nauk SSSR, Ser. Khim.,
965, 1107 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1965, 14, 1074);
b) M. Betti and A. Torichelli, Gazz. Chim. Ital., 1903, 33, 1; (c) M. R.
7
1
(
References
1
2
3
S. C. Stinson, Chem. Eng. News, 2001, 79 (40), 79.
I. Szatmári and F. Fülöp, Curr. Org. Synth., 2004, 1, 155.
(a) C. Cardellicchio, G. Ciccarella, F. Naso, F. Perna and P. Tortorella,
Tetrahedron, 1999, 55, 14685; (b) G. Palmieri, Tetrahedron: Asymmetry,
Saidi, N. Azizi and M. R. Naimi-Jamal, Tetrahedron Lett., 2001, 42,
8111; (d) M. Betti, Gazz. Chim. Ital., 1901, 31, II, 176; (e) Y. Gong and
K. Kato, Tetrahedron: Asymmetry, 2001, 12, 2121; (f) W. R. Brode
and J. B. Littman, J. Am. Chem. Soc., 1930, 52, 1655.
8 (a) F. Sachs and P. S. Steinert, Ber. Dtsch. Chem. Ges., 1904, 37, 1736;
(b) D. H. Hunter and S. K. Sim, Can. J. Chem., 1972, 50, 669;
2000, 11, 3361; (c) C. Cimareli, A. Mazzanti, G. Palmieri and E. Volpini,
J. Org. Chem., 2001, 66, 4759; (d) D.-X. Liu, L.-C. Zhang, Q. Wang,
(c) N. A. Lozinskaya, V. V. Tsybezova, M. V. Proskurnina and N. S. Zefirov,
‡
Izv. Akad. Nauk, Ser. Khim., 2003, 646 (Russ. Chem. Bull., Int. Ed.,
2003, 52, 674).
1
-[a-(4''-Dimethylaminobenzylidene)amino-4'-dimethylaminobenzyl]-
1
naphth-2-ol 3e: yield 96%; mp 224–226 °C (benzene). H NMR (CDCl )
3
d: (tautomer A) 2.90 (s, MeN), 3.03 (s, Me'N), 6.34 (s, CHN), 8.43 (s,
CH=N); (tautomer B) 2.90 (s, MeN), 2.98 (s, Me'N), 5.64 (s, CHN),
5
.74 (s, CHO); (tautomer C) 2.96 (s, MeN), 3.00 (s, Me'N), 5.80 (s,
CHN), 5.93 (s, CHO); (tautomers A + B + C) 6.65–7.92 (m, CHarom).
Found (%): C, 80.09; H, 7.24; N, 9.95. Calc. for C H N O (%): C,
2
8
29
3
7
9.40; H, 6.90; N, 9.91. For the tautomer ratios, see Table 1.
Received: 30th November 2006; Com. 06/2833
–
240 –