Organic Letters
Letter
(5) Zhu, J. S.; Kraemer, N.; Li, C. J.; Haddadin, M. J.; Kurth, M. J. J.
Org. Chem. 2018, 83, 15493.
(6) (a) see Allen, J. M.; Allen, S. K.; Baertschi, S. W. J. Pharm.
Biomed. Anal. 2000, 24, 167 and references therein . (b) Kuhn, H. J.;
Braslavsky, S. E.; Schmidt, R. Pure Appl. Chem. 2004, 76, 2105.
(7) (a) Yamamoto, H.; Kawasaki, M. Bull. Chem. Soc. Jpn. 2007, 80,
595. (b) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2006,
2031. (c) Vogt, P. F.; Miller, M. J. Tetrahedron 1998, 54, 1317.
(d) Yamamoto, H.; Momiyama, N. Chem. Commun. 2005, 3514.
(e) Vogt, P. F.; Miller, M. J. Tetrahedron 1998, 54, 1317.
(f) Waldmann, H. Synthesis 1994, 1994, 535.
(8) (a) Amin, A. H.; Mehta, D. R. Nature 1959, 184, 1317.
(b) Mehta, D. R.; Naravane, J. S. R.; Desai, M. J. Org. Chem. 1963, 28,
445. (c) Jain, M. P.; Koul, S. K.; Dhar, K. L.; Atal, C. K.
Phytochemistry 1980, 19, 1880.
(9) For recent publications on tryptanthrin, which was known for
more than 100 years, see: Garcellano, R. C.; Moinuddin, S. G. A.;
Young, R. P.; Zhou, M.; Bowden, M. E.; Renslow, R. S.; Yesiltepe, Y.;
Thomas, D. G.; Colby, S. M.; Chouinard, C. D.; Nagy, G.; Attah, I.
K.; Ibrahim, Y. M.; Ma, R.; Franzblau, S. G.; Lewis, N. G.; Aguinaldo,
A. M.; Cort, J. R. J. Nat. Prod. 2019, 82, 440 and references therein .
(10) (a) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles
1997, 46, 541. (b) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J.
Heterocycles 1999, 51, 1883. (c) Ma, Z.-Z.; Hano, Y.; Nomura, T.;
Chen, Y.-J. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 1999, 41,
547. Chem. Abstr. 2000 132 234276. (d) Ma, Z.-Z.; Hano, Y.;
Nomura, T.; Chen, Y.-J. Phytochemistry 2000, 53, 1075.
(11) Beaume, A.; Courillon, C.; Derat, E.; Malacria, M. Chem. - Eur.
J. 2008, 14, 1238.
(12) Kamal, A.; Ramana, K. V.; Rao, M. V. J. Org. Chem. 2001, 66,
997.
(13) Mhaske, S. B.; Argade, N. P. J. Org. Chem. 2001, 66, 9038.
(14) Shemchuk, L. A.; Chernykh, V. P.; Krys’kiv, O. S. Russ. J. Org.
Chem. 2006, 42, 382.
(15) Mhaske, S. B.; Argade, N. P. J. Org. Chem. 2004, 69, 4563.
(16) Chavan, S. P.; Sivappa, R. Tetrahedron 2004, 60, 9931.
(17) See Table 4 in Mhaske, S. B.; Argade, N. P. Tetrahedron 2006,
62, 9787.
(18) Kucherov, F. A.; Romashov, L. V.; Galkin, K. I.; Ananikov, V. P.
ACS Sustainable Chem. Eng. 2018, 6, 8064.
(19) For method development and applications of DU8+, see:
(a) Kutateladze, A. G.; Kuznetsov, D. M.; Beloglazkina, A. A.; Holt, T.
J. J. Org. Chem. 2018, 83, 8341. (b) Kutateladze, A. G.; Kuznetsov, D.
M. J. Org. Chem. 2017, 82, 10795. (c) Kutateladze, A. G.; Reddy, D. S.
J. Org. Chem. 2017, 82, 3368. (d) Kutateladze, A. G.; Mukhina, O. A.
J. Org. Chem. 2015, 80, 10838. (e) Kutateladze, A. G.; Mukhina, O. A.
J. Org. Chem. 2015, 80, 5218. (f) Kutateladze, A. G.; Mukhina, O. A. J.
Org. Chem. 2014, 79, 8397.
(20) This type of transient nitroso Diels−Alder intermediates was
postulated before: (a) Wanner, M. J.; Koomen, G.-J. J. Chem. Soc,
Perkin Trans 1 2001, 1908. (b) Butin, A. V.; Stroganova, T. A.;
Lodina, I. V.; Krapivin, G. D. Tetrahedron Lett. 2001, 42, 2031.
(21) Quinazolinone 5 is alternatively accessible through ground-
state reactions, for example, microwave-assisted condensation of
anthranilamide with maleic anhydride in acetic anhydride in the
presence of AcONa; see: Shemchuk, L. A.; Chernykh, V. P.; Krys’kiv,
O. S. Russ. J. Org. Chem. 2006, 42, 382. However, the photochemical
cascade shown in Scheme 3 allows for accessing the Diels−Alder
product 6 in a one-pot fashion under exceptionally mild conditions in
dichloromethane, which could be advantageous for the cases when the
targeted quinazolinone product possesses sensitive functional groups
as desired substituents.
(22) Peters, M. K.; Herges, R. Beilstein J. Org. Chem. 2017, 13, 2659.
D
Org. Lett. XXXX, XXX, XXX−XXX